PREGLED UPORABE UMETNE INTELIGENCE V JEDRSKIH ELEKTRARNAH
Povzetek
Jedrske elektrarne so poznane kot kompleksni sistemi, njihovo vzdrževanje pa je ključno za zagotavljanje varnosti in zanesljivega obratovanja. Trenutno se v jedrskih elektrarnah uporablja princip časovno zasnovanega vzdrževanja, ki temelji na periodičnih pregledih za preprečevanje okvar. Pomembno je poudariti, da takšen pristop zahteva veliko porabo sredstev in ni vedno učinkovit. Alternativno lahko uvedemo vzdrževanje na podlagi stanja opreme z uporabo umetne inteligence ob predčasnem zaznavanju okvar, s čimer zmanjšamo stroške vzdrževanja in obratovanja. Potencial umetne inteligence v jedrski industriji je velik, od zagotavljanja zanesljive proizvodnje do vzdrževanja. Tehniki, kot sta nadzorovano in nenadzorovano učenje, sta izpostavljeni v članku, saj sta ključno orodje za zaznavanje napak, vzorcev in razvoja preventivnih modelov. Pri nadzorovanem učenju algoritem učimo z znanimi podatki, ki so klasificirani. Pri nenadzorovanem učenju algoritem učimo z veliko količino neklasificiranih podatkov, iz katerih model izlušči vzorce in zaznava odstopanje. Za integracijo umetne inteligence v jedrske elektrarne pa ostaja še veliko izzivov, med drugim tudi pomanjkanje standardnih pristopov. Ne glede na ponujene izzive pa orodja z uporabo umetne inteligence, globokega učenja in hibridnimi modeli obetajo pozitivne rezultate na področju zaznavanja napak in napovedovanja v jedrskih elektrarnah. Takšni napredki izboljšujejo varnost in omogočajo zanesljivo obratovanje. Čeprav umetna inteligenca še ni bila temeljno vpeljana v jedrsko industrijo, prikazuje pozitivne napredke za njeno prihodnost. Njena implementacija povečuje zaznavanje napak, zmanjšuje obratovalna tveganja ter zagotavlja stabilno in zanesljivo proizvodnjo električne energije.
Prenosi
Literatura
U.S. Nuclear Regulatory Commission: Artificial intelligence strategic plan 2023-2027, NUREG-2261, 2023
U.S. Nuclear Regulatory Commission: Exploring advanced computational tools and techniques with artificial intelligence and machine learning in operating nuclear plants, NUREG/CR7291, 2022
D.A. Snyder: Preventive maintenance in nuclear plants, DUN-SA-109, 1969
A. Al Rashdan, S. St. Germain: Methods of data collection in nuclear power plants, Nuclear Technology, vol. 205, iss.8, pp. 1062-1074, 2019
S. Arita et al.: Development of a method of selecting important alarms for nuclear power plants, Journal of Nuclear Science and Technology, vol. 32, iss. 12, pp. 1218-1229 1995
H.M. Hashemian: On-line monitoring applications in nuclear power plants, Progress in Nuclear Energy, vol. 53, iss. 2, pp. 167-181, 2011
U.S. Department of Energy: Development of a Technology roadmap for online monitoring in nuclear power plants, 2018
Nature America: Statistics versus machine learning, Springer Nature, vol. 15, iss. 4, pp. 233-235, 2018
K.C.A Khanzode, R.D. Sarode: Advantages and disadvantages of artificial intelligence and machine learning: a literature review, International Journal of Library & Information Science, vol. 9, iss. 1, pp. 30-36, 2020
S. Das et al.: Applications of artificial intelligence in machine learning: review and prospect, International journal of computer applications, vol. 115, iss. 9, pp. 31-41, 2015
P. Cunningham, M. Cord, S. J. Delany: Machine learning techniques for multimedia: case studies on organization and retrieval, Springer Science & Business Media, 2008
A. Krenker, J. Bešter, A. Kos: Introduction to the artificial neural networks, Artificial neural networks - methodological advances and biomedical applications, 2011
G. Bebis, M. Georgiopoulos: Feed-forward neural networks, IEEE Potentials, vol. 13, iss. 4, pp. 27-31, 1994
Z. Li et al: A survey of convolutional neural networks: analysis, applications, and prospects, IEEE Transactions on neural networks and learning systems, vol. 33, iss. 12, pp. 6999-7019, 2021
G. Lee, at al.: A convolutional neural network model for abnormality diagnosis in a nuclear power plant, Applied soft computing journal, vol. 99, 2021
A. K. Tyagni, A. Abraham: Recurrent neural networks; Concepts and Applications, 2023
J. Ali et al: Random forests and decision trees, International journal of computer applications, vol. 9, iss. 3, pp. 272-278, 2012
A. Ghosal et al: A short review on different clustering techniques and their applications, Advances in intelligent systems and computing, vol. 937, pp. 69-83, 2020
Y. Pang et al: Neighborhood Preserving Projections (NPP): A Novel Linear Dimension Reduction Method, Advances in Intelligent Computing, LNTCS, vol. 3644, pp. 177-125, 2005
A. Kumar et al.: Reinforcement learning algorithms: A brief survey, Expert Systems with Applications, vol. 231, 2023
Z. Gao et al.: A Survey of Fault Diagnosis and Fault-Tolerant Techniques—Part I: Fault Diagnosis With Model-Based and Signal-Based Approaches, IEEE Transactions on Industrial Electronics, vol. 62, iss, 6, pp. 3757-3767, 2015
T. Lin et al.: Advanced fault diagnosis method for nuclear power plant based on convolutional gated recurrent network and enhanced particle swarm optimization, Annals of Nuclear Energy, vol. 151, 2021
H. Wang et al.: Deep learning schemes for event identification and signal reconstruction in nuclear power plants with sensor faults, Annals of Nuclear Energy, vol. 154, 2021
M. Gomez et al.: Nuclear energy system’s behavior and decision making using machine learning, Nuclear Engineering and Design, vol. 324, pp. 27-34, 2017
A. Naimi et al.: Machine Learning-Based Fault Diagnosis for a PWR Nuclear Power Plant, IEEE Access, vol. 10, pp. 126001-126010, 2022
J. Ma, J. Jiang: Semisupervised classification for fault diagnosis in nuclear power plants, Nuclear Engineering and Technology, vol. 47, iss. 2, pp. 176-186, 2015
Yong-kuo et al.: A cascade intelligent fault diagnostic technique for nuclear power plants, Journal of Nuclear Science and Technology, vol. 55, iss. 2, pp. 254-266, 2018
R.M. Ayo-Imoru, A.C. Cilliers: Continuous machine learning for abnormality identification to aid condition-based maintenance in nuclear power plant, Annals of Nuclear Energy, vol. 118, pp. 61-70, 2018
H. A: Gohel et al.: Predictive maintenance architecture development for nuclear infrastructure using machine learning, Nuclear Engineering and Technology, vol. 52, iss. 7, pp. 1436-1442, 2020
S. Seker et al.: Elman's recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery, Engineering Applications of Artificial Intelligence, vol. 16, iss. 7-8, pp. 647-656, 2003
G. Qian, J. Liu.: A comparative study of deep learning-based fault diagnosis methods for rotating machines in nuclear power plants, Annals of Nuclear Energy, vol. 178, 2022
G. Qian, J. Liu.: Development of deep reinforcement learning-based fault diagnosis method for rotating machinery in nuclear power plants, Progress in Nuclear Energy, vol. 152, 2022