ANALYSIS OF AGED CABLES` INSULATION WITH X-RAY FLUORESCENCE SPECTROMETRY
Abstract
The paper provides an analysis with X-ray fluorescence spectrometry of aged cable samples. The work encompasses a review of the electrical, mechanical and chemical properties, as well as measurement methods for determining those parameters. The analyses are based on physical principles that allow us to assess the condition of the cable insulation. Using the physical properties and measurement results, mathematical models can be formulated to describe the ageing of individual materials in the presence of specific influences. The goal of the paper is to establish the foundation for the development of a measurement method using X-ray spectral analysis. The methodology assumes that the presence of specific elements decreases or increases on the material's surface as it ages. By using a standard indenter modulus test, we can determine reference points for X-ray spectral analysis. Sampling these points on differently degraded cables enables the establishment of criteria for acceptable cable insulation.
Downloads
References
S. Ilie, R. Setnescu, E. M. Lungulescu, V. Marinescu, D. Ilie, T. Setnescu, G. Mareş: Investigations of a mechanically failed cable insulation used in indoor conditions, Polymer Testing, let. 30, No. 2, p.p. 173–182, 2011.
E. Mustafa, R. S. A. Afia, Z. Á. Tamus: Condition Monitoring Uncertainties and Thermal-Radiation Multistress Accelerated Aging Tests for Nuclear Power Plant Cables: A Review, Periodica polytechnica electrical engineering and computer science, No. 1, p.p. 20–32, 2020.
J. - L. Parpal, J. - P. Crine, C. Dang: Electrical aging of extruded dielectric cables, A physical model, IEEE Transactions on Dielectrics and Electrical Insulation, No. 2, p.p. 197–209, April 1997.
J. Li, et al.: The effect of self-producing heat and external radiation on the insulating property of wire, Procedia Engineering, No. 135, p.p. 151–159, 2016.
M. H. Shwehdi, M. A. Morsy, A. Abugurain: Thermal aging tests on XLPE and PVC cable insulation materials of Saudi Arabia, 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, p.p. 176–180, 2003.
M. Pecht, R. Agarwal, F. P. McCluskey, T. J. Dishonghm S. Javadpour, R. Mahajan: Electronic packaging materials and their propreties, ZDA: CPC press LLC, 1999.
Megger: The complete huide to electrical insulation testing, 2006.
IEC 60364: Priporočila za meritve električnih inštalacij (IEC 60364-6), 2005.
H. Torkaman, F. Karimi: Measurement variations of insulation resistance/polarization index during utilizing time in HV electrical machines, A survey, Measurement, No. 59, p.p. 21–29, 2015.
G. Faria, M. Pereira, G. Lopes, J. Villibor, P. Tavares and I. Faria: Evaluation of Capacitance and Dielectric Dissipation Factor of Distribution Transformers, Experimental Results, 2018 IEEE Electrical Insulation Conference (EIC), ZDA, pp. 336–339, 2018.
W. J. K. Raymond, H. A. Illias, A. H. A. Bakar, H. Mokhlis: Partial discharge classifications: Review of recent progress, Measurement, p.p. 164–181, 2015.
K. L. Simmons, A. F. Pardini, L. S. Fifield, J. E. Tedeschi, M. P. Westman, A. M. Jones, P. Ramuhalli: Determining remaining useful life of aging cables in nuclear power plant interim study FY13, U.S department of energy, ZDA, september 2013.
R. J. Arhart: The chemistry of ethylene propylene insulation I, IEEE Electrical Insulation Magazine, No. 5, p.p. 31–34, 1993.
R. J. Arhart: The chemistry of ethylene propylene insulation II, IEEE Electrical Insulation Magazine, No. 6, p.p. 11–14, 1993.
A. K. Sen: Cable technology, Rubber Products Manufacturing Technology, A. K. Bhowmick (ur.), M. M. Hall (ur.), and H. A. Benewey (ur.). New York, 1994.
Handbook of elastomers: 2. edition, ZDA: CRC Press, 2001.
B. P. Kapgate, C. Das: Electronic applications of chloroprene rubber and its composites, Flexible and Stretchable Electronic Composites, p.p. 279–304, 2016.
F. J. Boerio, S. G. Hong: Degradation of rubber-to-metal bonds during simulated cathodic delamination, The Journal of Adhesion, No. 1–4, p.p. 119–134, 1989.
R. J. Schaefer: Mechanical properties of rubber, v Harris' Shock and Vibration Handbook, 6. edition, A. Piersol (ur.), T. Paez (ur.), McGraw-Hill Companies Inc, 2010, p.p. 33.1–33.18.
G. Akovali: Plastic materials: chlorinated polyethylene (CPE), chlorinated polyvinylchloride (CPVC), chlorosulfonated polyethylene (CSPE) and polychloroprene rubber (CR), Toxicity of building materials, p.p. 54–75. Woodhead Publishing, 2012.
G.E Sliter: Overview of research on nuclear plant cable aging and life extension, SMiRT-12, p.p. 199–2003, 1993.
M. Pirc, J. Avsec, N. Č. Korošin, U. L. Štangar, R. C. Korošec: Cable aging monitoring with differential scanning calorimetry (DSC) in nuclear power plants, Transactions of FAMENA, p.p. 87–98, 2018.
G. N. Dolenko, O. K. Poleshchuk, J. N. Latosińska: X-ray emission spectroscopy, methods, Encyclopedia of spectroscopy and spectrometry, p.p. 2984–2988, 2010.
B. Beckhoff, B. Kanngießer, N. Langhoff, R. Wedell, Handbook of Practical X-Ray Fluorescence Analysis, 2006.
O. M. H. Ahmed, et al.: Quality assessment statistic evaluation of X-ray fluorescence via NIST and IAEA standard reference materials, World Journal of Nuclear Science and Technology 7.2, p.p. 121–128, 2017.
R. Sitko, B. Zawisza: Quantification in X-Ray Fluorescence Spectrometry, X-ray spectroscopy, p.p. 137–162, 2012.