SONČNE CELICE NA OSNOVI ENOPLASTNIH ORGANSKIH POLPREVODNIKOV
Povzetek
V ēlanku so modelirani fizikalni procesi za primer stacionarne osvetlitve sonēne celice enoplastnega organskega polprevodnika, ki v odsotnosti zunanje napetosti vodijo do kratkostiēnega toka. V unipolarni enoplastni kavina/organski polprevodnik/kovina strukturi, je zaradi eksponentnega pojemanja gostote toka svetlobe v plasti polprevodnika koncentracija ekscitonov funkcija globine. Gostota rekombinacij nabojev je zaradi zapisane lastnosti prostorsko odvisna kar povzroēi globinsko porazdelitev gostote pasti. Kratkostiēni tok sestavljajo nekompenzirani naboji prostorsko nagomilani (zaradi vgrajenega elektriēnega polja) v
povpreēni oddaljenosti ene difuzijske dolžine ekscitona od electrode. Na osnovi v literaturi objavljenih meritev tokaͲnapetosti enoplastne structure poli(paraͲfenilen thienilen)organske sonēne celice ITO/LPPPT(59 nm)/Al je model uporabljen za izraēun prostorske porazdelitve elektriēnega potenciala, rezultirajoēega notranjega elektriēnega polja in koncentracije elektriēno nabitih pasti v zapisanem organskem polprevodniku.
Prenosi
Literatura
P. Peumans, V. Buloviē, S. R. Forest, Efficient photon harvesting at high optical intensities in ultrathin organic doubleͲheterostructure photovoltaic diodes, Appl. Phys. Lett., 76, 2650 (2000).
P. Peumans, A. Yakimov, S. R. Forrest, Small molecular weight organic thinͲfilm photodetectors and solar cells, J. Appl. Phys. 93, 3693 (2003).
A. Kumar, S. Sista, Y. Yang, Dipole induced anomalous SͲshape IͲV curves in polymer solar cells, J. Appl.Phys. 105, 094512 (2009).
M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).
I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Direct measurement of conjugated polymer electronic excitation energies using the metal/polymer/metal structures, Phys. Rev. Lett. 76, 1900 (1996).
S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley&Sons, New York, 1981.
G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, Photovoltaic measurements of the builtͲin potential in organic light emitting diodes and photodiodes, J. Appl. Phys. 84, 1583 (1998).
A. K. Ghosh, T. Feng, Merocyanine organic solar cells, J. Appl. Phys. 49, 5982 (1978).
N. Tessler, N. Rappaport, Excitation density dependence of photocurrent efficiency in low mobility semiconductors, J. Appl. Phys. 96, 1083 (2004).
P. N. Murgatroyd, Theory of spaceͲchargeͲlimited current enhanced by Frenkel effect, J. Phys. D; Appl. Phys., 151 (1970).
B. Cvikl, The driftͲdiffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level, submitted for publication.
K. Petritsch in Organic Solar Cell Architectures, PhD Thesis, 2000. TechnischͲ Naturwissenschaftliche Fakultät der Technischen Universität Graz, Austria.
M. Goodman, A. Rose, Double extraction of uniformly generated electronͲhole pairs from insulators with noninjecting contacts,J. Appl. Phys. 42, 2823 (1971).
B. Cvikl, unpublished.
ref. /11/; see also B. Cvikl, M. Koželj, On the difference between drift and driftͲdiffusion interpretation of electron current in singleͲlayer metal/organic semiconductor structure, I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Direct measurement of conjugated polymer electronic excitation energies using the metal/polymer/metal structures, Phys. Rev. Lett. 76, 1900 (1996).
S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley&Sons, New York, 1981.
G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, Photovoltaic measurements of the builtͲin potential in organic light emitting diodes and photodiodes, J. Appl. Phys. 84, 1583 (1998).
A. K. Ghosh, T. Feng, Merocyanine organic solar cells, J. Appl. Phys. 49, 5982 (1978).
N. Tessler, N. Rappaport, Excitation density dependence of photocurrent efficiency in low mobility semiconductors, J. Appl. Phys. 96, 1083 (2004).
P. N. Murgatroyd, Theory of spaceͲchargeͲlimited current enhanced by Frenkel effect, J. Phys. D; Appl. Phys., 151 (1970).
B. Cvikl, The driftͲdiffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level, submitted for publication.
K. Petritsch in Organic Solar Cell Architectures, PhD Thesis, 2000. TechnischͲ Naturwissenschaftliche Fakultät der Technischen Universität Graz, Austria.
M. Goodman, A. Rose, Double extraction of uniformly generated electronͲhole pairs from insulators with noninjecting contacts,J. Appl. Phys. 42, 2823 (1971).
B. Cvikl, unpublished.
ref. /11/; see also B. Cvikl, M. Koželj, On the difference between drift and driftͲdiffusion interpretation of electron current in singleͲlayer metal/organic semiconductor structure,I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Direct measurement of conjugated polymer electronic excitation energies using the metal/polymer/metal structures, Phys. Rev. Lett. 76, 1900 (1996).
S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley&Sons, New York, 1981.
G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, Photovoltaic measurements of the builtͲin potential in organic light emitting diodes and photodiodes, J. Appl. Phys. 84, 1583 (1998).
A. K. Ghosh, T. Feng, Merocyanine organic solar cells, J. Appl. Phys. 49, 5982 (1978).
N. Tessler, N. Rappaport, Excitation density dependence of photocurrent efficiency in low mobility semiconductors, J. Appl. Phys. 96, 1083 (2004).
P. N. Murgatroyd, Theory of spaceͲchargeͲlimited current enhanced by Frenkel effect, J. Phys. D; Appl. Phys., 151 (1970).
B. Cvikl, The driftͲdiffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level, submitted for publication.
K. Petritsch in Organic Solar Cell Architectures, PhD Thesis, 2000. TechnischͲ Naturwissenschaftliche Fakultät der Technischen Universität Graz, Austria.
M. Goodman, A. Rose, Double extraction of uniformly generated electronͲhole pairs from insulators with noninjecting contacts,J. Appl. Phys. 42, 2823 (1971).
B. Cvikl, unpublished.
ref. /11/; see also B. Cvikl, M. Koželj, On the difference between drift and driftͲdiffusion interpretation of electron current in singleͲlayer metal/organic semiconductor structure,devices and materials-MIDEM, Proceedings, September 9-11,2009,p.69Ͳ74,Postojna,Slovenia.