IZRABA TOPLOTE TESNILNE PARE TURBINE Z DINAMIČNIMI STIRLING MOTORJI

  • Dušan Strušnik Energetika Ljubljana d.o.o. enota TE-TOL
  • Marčič Marčič Univerza v Ljubljani, Fakulteta za strojništvo
  • Jurij Avsec Fakulteta za energetiko Univerze v Mariboru

Povzetek

V članku bomo predstavili možnosti izrabe toplote tesnilne pare parne kondenzacijske turbine z dinamičnim Stirling motorji. Z vgraditvijo dinamičnih Stirling motorjev v armaturo tesnilne pare turbine bomo izkoriščali toploto tesnilne pare in pridobivali električno energijo. Dinamika Stirling motorja se izraža z vgrajenim hranilnikom in regulacijo količine delovnega plina, ki poskrbi za ustrezno moč Stirling motorjev. Količina delovnega plina v motorju se uravnava glede na razpoložljivi toploto tesnilne pare turbine. S pomočjo opravljenih meritev količine in kvalitete tesnilne pare turbine, bomo izdelali model tlačnih razmer delovnega plina v Stirling motorju. Analizirali bomo odzivnost motorja pri različnih količinah in vrstah delovnih plinov.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

S. Toghyani, A. Kasaeian, S. H. Hashemabadi, M. Salimi: Multi-objective optimization of GPU3 Stirling engine using third order analysis, Energy Conversion and Management, 87, (2014), 521–529.

J. Ruelas, N. Velazquez, J. Cerezo: A mathematical model to develop a Schefflertypesolar concentrator coupled with a Stirling engine, Appl Energy, 101, (2013), 101, 253–60.

S. K. Andersen: Numerical simulation of cyclic thermodynamic processes, PhD Thesis, Department of Mechanical Engineering, Technical University of Denmark, (2006).

T. Lia, D. Tanga, Z. Lia, J. Dua, T. Zhoub, Y. Jiab:Development and test of a Stirling engine driven by waste gases for the micro-CHP system,Applied Thermal Engineering, 33-34, (2012), 119-123.

J. I. Prieto, J. Fano, C. González, M. A. González, R. Diaz: Preliminary design of the kinematic Stirling engine using dynamic similarity and quasi-static simulation, Mechanical Engineering Science, 211, (1997), 229-238.

M. Mori, M. Sekavčnik, B. Drobnič: Karakteristike stirlingovega motorja, Univerza v Ljubljani, Fakulteta za strojništvo, (2010) p.p. 3-8.

J. L. Salazar, W. L. Chen: A computational fluid dynamics study on the heat transfer char- acteristics of the working cycle of a b-type Stirling engine, Energy Conversion and Management, 88, (2014), 177–188.

H. Karabulut, F. Aksoy, E. Qzturk: Thermodynamic analysis of a b type Stirling engine with a displacer driving mechanism by means of a lever, Renew Energy, 34, (2009), 202–8.

W. L Chen, K. L. Wong, Y. F. Chang: A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low temperature-differential c-type Stirling engine, Int Journal Heat Mass Transfer, 75, (2014), 145–55.

C. H. Cheng, Y. J. Yu:Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism, Renew Energy, 35, (2010), 2590–601.

U. Stritih, G. Zupan, V. Butala: Parametrična analiza Stirlingove soproizvodne enote na biomaso za uporabo v hišni tehniki, Strojniški vestnik, Journal of Mechanical Engeeniring, Univerza v Ljubljani, Fakulteta za strojništvo, 2007.

F. Sala, C. M. Invernizzi: Low temperature Stirling engines pressurised with real gas effects, Energy, 75, (2014), 225-236.

G. Angelino, C. Invernizzi: Real gas brayton cycles for organic working fluids,Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215 (1), (2001), 27-38.

C. M. Invernizzi: Stirling engines using working fluids with strong real gas effects, Applied Thermal Engineering, 30 (13), (2010), 1703-10.

G. Valentia, P. Silvaa, N. Fergnania, G. D. Marcoberardinoa, S. Campanaria, E. Macchia: Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications, Energy Procedia, 45, (2014), 1235-1244.

N. C. J. Chen, F. P. Griffin: A Review of Stirling Engine Mathematical Models, Oak Ridge National Laboratory, (1983).

N. Parlak, A. Wagner, M. Elsner, H.S. Sohyan: Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions, Renewable Energy, 34, (2009) 266-273

Matlab: Computer program, Simulink, version 2010-a.

M. Hooshang, R. A. Moghadam, S. A. Nia, M. T. Masouleh: Optimization of Stirling engine design parameters using neural networks, Renewable Energy, 74, (2015), 855-866.

X. S. Zhang: Neural networks in optimization, Springer; 2000.

M. K. D. Kiani, B. Ghobadian, T. Tavakoli, A. M. Nikbakht, G. Najafi: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends, Energy Convers Manag, (2010), 65-69.

Y. O. Özgören, S. Çetinkaya, S. Sarıdemir, A. Çiçek, F. Kara: Predictive modeling of performance of a helium charged Stirling engine using an artificial neural network, Energy Conversion and Management, 67, (2013), 357–368.

Objavljeno
2024-04-08
Kako citirati
Strušnik D., Marčič M., & Avsec J. (2024). IZRABA TOPLOTE TESNILNE PARE TURBINE Z DINAMIČNIMI STIRLING MOTORJI. Journal of Energy Technology, 7(3), 17-34. https://doi.org/10.18690/jet.7.3.17-34.2014
Rubrike
Articles