ON THE ISOCHRONICITY OF PERIODIC SOLUTIONS AT A CENTRE MANIFOLD
Abstract
The problem of isochronicity is discussed from the historical and dynamical systems point of view. The model of Huygen’s cycloidal chops is mathematically explained. We consider two dynamical systems arising from a three-dimensional system with a centre manifold. Based on the period function approach we find necessary and sufficient criteria on the coefficients of the system to distinguish between the cases of isochronous and non-isochronous oscillations.
Downloads
References
G.E. Hite: Approximations for the Period of a Simple Pendulum, The Physics Teacher, Vol. 43, p.p. 290, 2005
C. Huygens The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks. Translated from the Latin and with a preface and notes by Richard J. Blackwell. With an introduction by H. J. M. Bos. Iowa State University Press, Ames, IA, 1986
H. Poincaré: Mémoire sur les courbes dénies par une équation différentielle, J. Math. Pures et. Appl. (Sér. 3), Vol. 7, p.p. 375–422, 1881; (Sér. 3), Vol. 8, p.p. 251–296, 1882; (Sér. 4), Voil. 1, p.p. 167–244, 1885; (Sér. 4), Vol. 2, p.p. 151–217, 1886
V.G. Romanovski, D.S. Shafer: The Center and cyclicity Problems: A computational Algebra Approach, Boston: Birkhäuser, 2009
B. Ferčec, X. Chen, V. Romanovski: Integrability conditions for complex systems with homogeneous quintic nonlinearities, Journal of applied analysis and computation, Vol. 1, Iss. 1, p.p. 9 – 20, 2011
B. Ferčec, J. Giné, Y. Liu, V. Romanovski: Integrability conditions for Lotka‐Volterra planar complex quartic systems having homogeneous nonlinearities, Acta applicandae mathematicae, Vol. 124, Iss. 1, p.p. 107 – 122, 2013
B. Ferčec, J. Giné, M. Mencinger, R. Oliveira: The center problem for a 1 : ‐4 resonant quadratic system, Journal of mathematical analysis and applications, Vol. 420, Iss. 2, p.p. 1568 – 1591, 2014
Z. Zhou: A New Method for Research on the Center‐Focus Problem of Differential Systems, Abstract and Applied Analysis, Art. ID 926538, 5 p.p., 2014
D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, New York: Springer, 3rd edition, 2007
S.Yu. Pilyugian, G.R. Sell: A Biographical Sketch of Victor A. Pliss, Journal of Dynamics and Differential Equations, Vol.15, 2003
V.A. Pliss: A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat., Vol. 28, p.p. 1297–1324, 1964
S. Chow, J. K. Hale: Methods of Bifurcation Theory, Springer‐Verlag, New York, 1982
J. Sijbrand: Properties of center manifolds, Trans.~Amer.~Soc., Vol. 289, 431‐469, 1985
R. Rikitake: Oscillations of a system of disc dynamos, Proc. Cambridge Philos. Soc., Vol. 54, p.p. 89‐105, 1958
R. Hide, A. C. Skeldon, D.J. Acheson: A study of two novel self‐exciting single‐disk homopolar dynamos: theory, Proc. R. Soc. Lond. A , Vol. 452, p.p. 1369‐1395, 1996
V.F. Edneral, A. Mahdi, V.G. Romanovski, D.S. Shafer: The center problem on a center manifold in �� , Nonlinear Anal., Vol. 75, p.p. 2614‐2622, 2012
V. Romanovski, M. Mencinger, B. Ferčec: Investigation of center manifolds of three‐ dimensional systems using computer algebra, Programming and computer software, Vol. 39, iss. 2, p.p. 67‐73, 2013