NAČRTOVANJE ELEKTROMEHANSKEGA GENERATORJA ZA IZRABO ENERGIJE GIBANJA

  • Franjo Pranjić University of Maribor, Faculty of Energy Technology
  • Nejc Smolar Univerza v Mariboru, Fakulteta za energetiko
  • Peter Virtič Univerza v Mariboru, Fakulteta za energetiko

Povzetek

V članku je predstavljenih 5 različnih izvedb cevnega nizkofrekvenčnega elektromehanskega generatorja za izrabo energije gibanja. Z namenom oblikovanja preprostega in robustnega generatorja so modeli sestavljeni iz trajnih magnetov, jekla in navitij. Pri vseh modelih generatorjev sta za okrogli gibljivi del uporabljeni sferična in cilindrična oblika ‐ pri štirih modelih so uporabljeni izključno trajni magneti, pri enem pa je prisotno jeklo. Gibljivi del drsi ali pa se valja skozi cev in pri tem inducira napetost v navitju statorja. Pri vsakem modelu imajo navitja enak presek ter enako število ovojev. Za primerjavo različnih modelov je bila izvedena 3D‐analiza z uporabo metode končnih elementov za določitev magnetnega pretoka skozi navitja, na podlagi katerih je izračunana inducirana napetost. Zaradi različnih geometrij navitij se je povprečna dolžina ovoja pri različnih izvedbah spreminjala, kar je posledično spreminjalo upornost in induktivnost ter s tem vplivalo na izhodno moč in izgube generatorja. Za simulacijo dinamike generatorjev je bilo z uporabo programa Simulink in predhodno pridobljenih podatkov iz 3D‐elektromagnetne analize določeno nadomestno vezje modela. Za določanje izplena smo z modelom v programu Simulink združili mehanske in električne sisteme.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

M. A. Mueller: Electrical generators for direct drive wave energy converters, IEE Proceedings ‐ Generation, Transmission and Distribution, vol. 149, no. 4, pp. 446‐456, July 2002. Available: https://digital‐library.theiet.org/content/journals/10.1049/ip‐gtd_20020394

R. Alamian, R. Shafaghat, S. Jalal Miri, N. Yazdanshenas, M. Shakeri: Evaluation of technologies for harvesting wave energy in the Caspian Sea, Renewable and Sustainable Energy Reviews, Volume 32, 2014. Available: https://doi.org/10.1016/j.rser.2014.01.036

Y. Cui, Z. Liu: Effects of Solidity Ratio on Performance of OWC Impulse Turbine. Advances in Mechanical Engineering. January 2015. Available: https://doi.org/10.1155/2014/121373

S. Hor, A. Tabesh and A. Zamani: Analytical model of an improved linear generator for seawave energy harvesting, IET Conference on Renewable Power Generation (RPG 2011), 2011, pp. 1‐4, Available: https://doi: 10.1049/cp.2011.0230

A. Pirisi, M. Mussetta, F. Grimaccia, D. Caputo, G. Gruosso and R. E. Zich: An innovative device for traffic energy harvesting, 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, 2012, pp. 1‐6. , Available: https://doi: 10.1049/cp.2012.0337

H. Li, P. Pillay: A Methodology to Design Linear Generators for Energy Conversion of Ambient Vibrations, 2008 IEEE Industry Applications Society Annual Meeting, 2008, pp. 1‐8, Available: https//doi: 10.1109/08IAS.2008.72

L. Huang, J. Liu, H. Yu, R. Qu, H. Chen, and H. Fang: Winding configuration and performance investigations of a tubular superconducting flux‐switching linear generator, IEEE Trans. Appl. Supercond., vol. 25, no. 3, 2015. Available: https://doi:10.1109/TASC.2014.2382877

G. Bracco, E. Giorcelli, and C. Attaianese: Design and experiments of linear tubular generators for the Inertial Sea Wave Energy Converter, 2011 IEEE Energy Conversion Congress and Exposition, 2011, pp. 3864‐3871, Available: https://doi:10.1109/ECCE.2011.6064294

J. Asama, M. R. Burkhardt, F. Davoodi and J. W. Burdick: Investigation of energy harvesting circuit using a capacitor‐sourced buck converter for a tubular linear generator of a moball: A spherical wind‐driven exploration robot, 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 3167‐3171, Available: https:// doi: 10.1109/ECCE.2015.7310104

M. R. Burkhardt, F. Davoodi, J. W. Burdick, and F. Davoudi: Energy harvesting analysis for Moball, A self‐propelled mobile sensor platform capable of long duration operation in harsh terrains, Proc. ‐ IEEE Int. Conf. Robot. Autom., pp. 2665–2672, 2014. Available: https://doi: 10.1109/ICRA.2014.6907241

S. Wu, P. C. K. Luk, C. Li, X. Zhao and Z. Jiao: Investigation of an Electromagnetic Wearable Resonance Kinetic Energy Harvester With Ferrofluid, IEEE Transactions on Magnetics, vol. 53, no. 9, pp. 1‐6, Sept. 2017, Art no. 4600706, Available: https://doi:10.1109/TMAG.2017.2714621

N. Fondevilla et al: Electromagnetic harvester device for scavenging ambient mechanical energy with slow, variable, and randomness nature, 2011 International Conference on Power Engineering, Energy and Electrical Drives, 2011, pp. 1‐5, Availbale: https://doi: 10.1109/PowerEng.2011.6036432

J. Asama, M. R. Burkhardt, F. Davoodi and J. W. Burdick: Design investigation of a coreless tubular linear generator for a Moball: A spherical exploration robot with wind‐energy harvesting capability, 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 244‐251, Available: https//doi:10.1109/ICRA.2015.7139007

B. J. Bowers and D. P. Arnold: Spherical, rolling magnet generators for passive energy harvesting from human motion, J. Micromechanics Microengineering, vol. 19, no. 9, 2009. Available: https:// doi:10.1088/0960‐1317/19/9/094008

J. Joos and O. Paul: Spherical magnetic energy harvester with three orthogonal coils, 2015 IEEE SENSORS, 2015, pp. 1‐4, Available:https://doi:10.1109/ICSENS.2015.7370662

C.R. Saha, T. O’Donnell, N. Wang, P. McCloskey: Electromagnetic generator for harvesting energy from human motion, Sensors and Actuators A: Physical, Volume 147, Issue 1, 2008, Pages 248‐253, Available: https://doi.org/10.1016/j.sna.2008.03.008

F. Pranjić, P. Virtič: Determination of an Optimum Fictitious Air Gap and Rotor Disk Thickness for a Coreless AFPMM, Tehnicki Vjesnik, Vol. 25(6):1731‐1738, December 2018, Available: https://doi:10.17559/TV 20171109105213

Objavljeno
2023-08-10
Kako citirati
Pranjić F., Smolar N., & Virtič P. (2023). NAČRTOVANJE ELEKTROMEHANSKEGA GENERATORJA ZA IZRABO ENERGIJE GIBANJA. Journal of Energy Technology, 14(4), 41-58. https://doi.org/10.18690/jet.14.4.41-58.2021
Rubrike
Articles