THE EXTERNAL BIAS-DEPENDENT ELECTRIC FIELD AT HOLE-INJECTING ELECTRODE/α-NPD JUNCTION AND ITS RELATIONSHIP TO GAUSSIAN DISORDERED INTERFACE STATES
Abstract
An alternative interpretation of two different sets of published temperature-dependent current-voltage α-NPD (i.e. N,N´-Di(1-naphthyl)-N,N´-diphenyl-(1,1´-biphenyl)-4,4´-diamine) organic semicon- ductor data is presented. The measurements are described in terms of the hole drift current density expressed with two parameters: the electric field at the hole-injecting interface, Eint, and, max, the hole mobility determined by the measured current density at the maximum value of the externally applied electric field, Ea, in a given experiment. The former parameter, depending on the contact résistance, may be a function of Ea but the latter is Ea independent, The fixed value of Eint signi- fies the occurrence of the space charge limited current, SCLC, within the electrode/α-NPD structures and the contact is ohmic. Then, the calculated weak bias‐dependent hole drift mobility, a function of Eint, equals the well‐known exponential bias‐dependent mobility, and saturates. The data not displaying SCLC characteristics are used for the calculation of Eint dependence on the applied field, Ea. It is shown that the quasi‐ohmic contacts cause Eint to become a strong double‐valued function of the externally applied electric field, Ea, described in terms of the distorted, inverted, high order parabola. The corresponding bias‐dependent hole drift mobility is non‐exponential and evolves on a considerably lower level than in SCLC cases. It is found that a sufficiently increased Ea alters the quasi‐ohmic contact/‐NPD region into the ohmic one. A simple model of a thin, net hole charged, electrode/‐NPD interface enables the relationship between the deduced interfacial electric field, Eint, and the Ea dependent Gaussian width, , as well as the energy shift of its peak, , along the negative binding energy is to be investigated. The current‐
voltage method appears to be a helpful expedient for the investigation of the electric field at hole‐injecting electrode/organic interfaces.
Downloads
References
K. H., S. Y. Yang, C. Yang, S. H. Kim, D. Choi, C. E. Park: Reducing the contact resistance in organic thin‐film transistors by introducing a PEDOT:PSS hole‐injection layer, Org. Electron. 9, 864, 2008
Z. Liu, M. Kobayashi, B. C. Paul, Z. Bao, Y. Nishi: Contact engineering for organic semiconductor devices via Fermi level depinning at the metal‐organic interface, Phys. Rev. B, 82, 035311, 2010
N. B. Kotadiya, H. Lu, A. Mondal, Y. Ie, D. Andrienko, P. W. M. Blom, G.‐J. A. H. Wetzelaer: Universal strategy for Ohmic hole injection into organic semiconductors with high ionization energies, Nature Materials, 17, 329, 2018
A. A. Günther, M. Sawatzki, P. Formánek, D. Kasemann, K. Leo: Contact Doping for Vertical Organic Field‐Effect Transistors, Adv. Funct. Mater. 26, 768, 2016, DOI: 10‐ 1002/adfm.201504377
W.‐L. Seah, C. G. Tang, R.‐Q. Png, V. Keerthi, C. Zhao, H. Guo, J.‐G. Yang, M. Zhou, P. K. H. Ho, L.‐L. Chua: Interface Doping for Ohmic Organic Semiconductor Contacts Using Self‐ Aligned Polyelectrolyte Counterion Monolayer, Adv. Funct. Mat. 27, 1606291, 2017
C. Liu, Y. Xu, Y.‐Y. Noh: Contact engineering in organic field‐effect transistors, Materials Today 18, 79, 2015
S. Liu, P. Billig, A. Al‐Shadeedi, V. Kaphle, B. Lüssem: Doped bottom‐contact organic field effect transistors, Nanotechnology 29, 284001, 2018
Z. B. Wang, M. G. Helander, M. Greiner, J. Qui, Z. H. Lu : Analysis of charge‐injection characteristics at electrode‐organic interfaces: Case study of the transition‐metal oxides, Phys. Rev. B 80, 235325, 2009
Z. B. Wang, M. G. Helander, M. T. Greiner, J. Qui, Z. H. Lu: Carrier mobility of organic semiconductors based on current‐voltage characteristics, J. Appl. Phys. 107, 034506, 2010
J. C. Blakesley, F. A. Castro, W. Kylberg, G. F. A. Dibb, C. A rantes, R. Valaski, M. Cremona, J. S. Kim, J.‐S. Kim: Towards reliable charge‐mobility benchmark measurements for organic semiconductors, Org. Electron., 15, 1263, 2014
B. Cvikl: The electric field at hole injecting metal/organic interface as a cause for manifestation of exponential bias‐dependent mobility, Thin Solid Films 573, 56, 2014
R. Rohloff, N. B. Kotadiya, N. I. Craciun, P. W. M. Blom, G. A. H. Wetzelaer: Electron and hole transport in the organic small molecule ‐NPD, Appl. Phys. Lett. 110, 073301, 2017
S. L. M. van Mensfoort, V. Shabro, R. J. de Vries, R. A. Janssen, R. Coehoom: Hole transport in the organic small molecular material ‐NPD; evidence for the presence of correlated disorder, J. Appl. Phys. 107, 113710 2010
M. A. Lampert: Simplified Theory of Space‐Charge‐Limited‐Currents in an Insulator with Traps, Phys. Rev. 103, 1648, 1956
P. Mark, W. Helfrich: Space‐Charge‐Limited Currents in Organic Crystals, J. Appl. Phys. 33, 205, 1962 S. Nishi, D. Taguchi, T. Manaka, M. Iwamoto: Analysis of current‐voltage characteristics of Au/pentacene/fluorine polymer/indium zinc oxide diodes by electric‐field‐induced‐optical second‐harmonic generation, J. Appl. Phys. 117, 245502, 2015
D. Taguchi, L. Zhang, J. Li, M. Weis, T. Manaka, M.. Iwamoto:, Analysis of Carrier Transients in Double‐Layer Organic Light Emitting Diodes by Electric‐Field‐Induced Second‐Harmonic Generation Measurement, J. Phys. Chem. C, 114, 15136, 2010
W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert, P. W. M. Blom, D. M. de Leeuw, M. A. J. Michels: Unified Description of Charge‐Carrier Mobilities in Disordered Semiconducting Polymers, Phys. Rev. Lett. 94, 206601, 2005
M. M. Mandoc, B. de Boer, G. Paasch, P. W. M. Blom: Trap‐limited electron transport in disordered semiconducting polymers, Phys. Rev. B 75, 193202, 2007
M. Bouhassoune, S.L.M. van Mensfoort, P.A. Bobbert, R. Coehoorn: Carrier‐density and field‐dependent charge‐carrier mobility in organic semiconductors with correlated Gaussian disorder, Org. Electron. 10, 437, 2009
I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, D. N eher: Band Bending in Conjugated Polymer Layers, Phys. Rev. Lett. 106, 216402, 2011
M. Oehzelt, N. Koch, G. Heimel: Organic semiconductor density of states controls the energy level alignment at electrode interfaces, Nat. Commun. 5 4174, 2014
Y. Shen, M. W. Klein, D. B. Jacobs, J. C. Scott, G. G. Malliaras: Mobility‐Dependent Charge Injection into an Organic Semiconductor, Phys. Rev. Lett. 86, 3867, 2001
T. J. Whitcher, W. S. Wong, A. N. Talik, K. L. Woon, N. Chaniek, H. Nakajima, T. Saisopa, P. Songsiriritthigul: Electrostatic model of energy‐bending within organic semiconductors: experiment and simulation, J. Phys.: Condens. Matter 28, 365002, 2016
T. J. Whitcher, W. S. Wong, A. N. Talik, K. L. Woon, N. Chaniek, H. Nakajima, T. Saisopa, P. Songsiriritthigul: Investigation into the Gaussian density of states widths of organic semiconductors, J. Phys. D: Appl. Phys. 49, 325106, 2016.
M. S. Khoshkhoo, H. Peisert, T. Chassé, M. Scheele: The role of the density of interface states in interfacial energy level alignment of PTCDA, Org. Electron. 49, 249, 2017
S. Beck, D. Gerbert, T. Glaser, A. Pucci: Charge Transfer at Organic/inorganic Interfaces and the Formation of Space Charge Regions Studied with Infrared Light, J. Phys. Chem. C119, 12545, 2015
G. Jecl, B. Cvikl: The density‐of‐states contributions to the negative field charge drift mobility effect in poly(3‐hexylthiopene) organic semiconductor, Thin Solid Films, 646, 190, 2018
T. Matsushima, Y. Kinoshita, H. Murata:, Formation of Ohmic hole injection by inserting an ultrathin layer of molybdenum trioxide between indium tin oxide and organic hole‐ transport layer, Appl. Phys. Lett. 91, 253504, 2007