PRIHAJAJOČA IV. GENERACIJA SMR REAKTORJEV: EVALVACIJA IN MOŽNOST INTEGRACIJE V ZAPRTE JEDRSKE GORIVNE KROGE
Povzetek
V preteklem desetletju se pojavljajo številni ekonomski, strateški, tehnični ter ostali razlogi, ki kažejo na določene prednosti Majhnih in srednjih reaktorjev (SMR), sicer prisotnih od pričetka uporabe jedrske energije za miroljubne namene. Četrta generacija jedrskih elektrarn med katere spadajo tudi SMR GEN IV je vključena v napredne zaprte gorivne kroge in omogoča velik napredek v trajnostnem razvoju ter proizvodnji energije. Najobetavnejši SMR koncepti stremijo k visoki temperaturi hladila na izstopu iz sredice ter visokem oplodnem razmerju ter predstavljajo velik napredek v zasnovi SMR GEN IV reaktorjev prihodnosti. Ta članek predstavlja sodoben pristop k procesu pregleda in evalvacije SMR GEN IV reaktorjev, ki so glede na današnje vedenje in informacije najugodnejši za zgodnjo implementacijo. V tem članku predstavljena evalvacija bazira na metodologiji vrednostne analize ekonomsko najzanimivejših tehnologij z najkrajšim časom do njihove komercialne uporabe. Vključevanje SMR GEN IV reaktorjev v sodobne zaprte gorivne cikle predstavlja velik potencial pri energetski tranziciji v nizkoogljično prihodnost. Masne bilance in tok materiala v izbranih gorivnih ciklih, primernih za implementacijo SMR reaktorjev, so bile določene s pomočjo NEA 1767 SMAFS modela ter v nadaljevanju s pomočjo webKORIGEN programskega paketa. Predstavljene prednosti SMR reaktorjev so zanimive tudi za države, ki
razmišljajo prvič o uporabi jedrske energije, saj postaja energetska samozadostnost ter neodvisnost strateško zelo pomembna.
Prenosi
Literatura
OECD/NEA, Nuclear Energy Agency, Small Modular Reactors: Nuclear Energy Market Potential for Near‐term Deployment, OECD Publications, NEA No. 7213, Paris, France, 2016
EMWG: Cost Estimating Guidelines for Generation IV Nuclear Energy Systems, Generation IV International Forum (GIF), Economic Modelling Working Group, EMWG, 2007
D. Schlissel and B. Biewald: Nuclear Power Plant Construction Costs, Synapse Energy Economics, Inc., Nuclear’s Tangled Economics, Business Week, 2008
OECD/NEA: Current status, Technical Feasibility and Economics of Small Nuclear Reactors, OECD Publications, Paris, France, 2011
ANS: Interim report of the American Nuclear Society President’s special committee on Small and Medium Sized reactor (SMR), generic licensing issues, ANS, 2010
Gen4 Energy: The Gen4 Module (G4M), http://www.gen4energy.com/technology/, accessibility check Jan 2018
Peter Líška, VUJE, Gérard Cognet: CEA, The ALLEGRO project – European project of fast breeder reactor, Proc. 1st International Nuclear Energy Congress, Warsaw, 23‐24 may, 2011
A. Kumar et al: Analysis of a sustainable gas cooled fast breeder reactor concept, Department of Nuclear Engineering, Texas A&M University, College Station, USA, 2014
E. Greenspan: Fission Reactors – Options and Challenges, Department of Nuclear Engineering, University of California, Berkley, USA, 2007
Idaho National Laboratory: Generation IV Nuclear Energy Systems Ten‐Year Program Plan ‐ Fiscal Year 2007, Appendix 6.0‐MSR, USA, 2007
Z. Donghui: Fast Reactor Development Strategy in China, China Institute of Atomic Energy, Proc. International Conference on Fast Reactors and Related Fuel Cycles, 4.‐7. march, Paris, France, 2013
C. Barton: Advanced High Temperature Reactor: http://nucleargreen.blogspot.com/2010/08/advanced‐high‐temperature‐reactor.html, 2010, accessibility check Jan 2018.
GIF, GEN IV International forum: Generation IV Systems: https://www.gen‐4.org/gif/jcms/c_59461/generation‐iv‐systems, accessibility check Jan 2018.
Idaho National Laboratory: Generation IV Nuclear Energy Systems Ten‐Year Program Plan ‐ Fiscal Year 2007, Appendix 2.0‐SCWR, Idaho, USA, 2007
A.I. Filin: Design Features of BREST Reactors and experimental work to advance the concept of BREST Reactors, SSC RF, RDIPE, Moscow, RF, 2003
A.V. Zrodnikov: Multipurposed Small Fast Reactor SVBR‐75/100 Cooled by Plumbum‐Bismuth, SSC RF, IPPE, Obninsk, RF, 2003
D. J. Diamond: Generation IV Nuclear Energy Systems, Brookhaven National Laboratory, presented at Tennessee University, USA, 2003
M. Ragheb: Nuclear, Plasma and radiation Science, Part IV, Ch. 4 High Temperature Gas Cooled Reactor, University of Illinois, USA, 2014
IAEA: Designs Features to Achieve Defence in Depth in Small and Medium Sized Reactors, IAEA Nuclear Energy Series Report NP‐T‐2.2, Wienna, 2009
M. Pšunder: The economy of construction industry, Tehniška založba Slovenije, Ljubljana, 1991
Worley Parsons: Small Modular Reactor Strategic Assessment, Reading, Avgust 2011
A.Buršič, T.Žagar: Generation IV SMR Reactor development Forced renaissance or true need?, PhD research seminar at subject Nuclear Power Plant Technologies, PhD Programme Nuclear Energy and Technology, University of Maribor, Faculty for Civil Engineering, April 2015
IAEA: Status of Small and Medium Sized Reactor Designs, IAEA, Division of Nuclear Power, Department of Nuclear Energy, Vienna, 2011
A.Buršič, T.Žagar: Characterization of Advanced Nuclear Fuel Cycles and determination of HLW quantity for final disposal based on Slovenian Used Nuclear Fuel Inventory, PhD research seminar at subject Advanced fuel cycles, PhD Programme Nuclear Energy and Technology, University of Maribor, Faculty for Civil Engineering, May 2012
OECD/NEA: Advanced Nuclear Fuel Cycles and Radioactive Waste Management, NEA No. 5990, OECD Publications, Paris, 2006
T. Žagar: Closed fuel cycle technologies, Jožef Stefan Institute, IJS‐DP‐9762, Issue 1, Ljubljana, 2008
T. Žagar, A. Buršič et al: Recycling as an option of used nuclear fuel management strategy, Nuclear engineering and design, ISSN 0029‐5493, vol. 241, no. 4, Amsterdam, North‐Holland, 2011
World Nuclear Association: Reactor Database, http://www.world‐nuclear.org/information‐library/facts‐and‐figures/reactor‐database.aspx, accessibility check Jan 2018