O IZOHRONOSTI PERIODIČNIH REŠITEV NA CENTRALNI MNOGOTEROSTI

  • Brigita Ferčec Center for applied mathematics and theoretical physics, University of Maribor
  • Matej Mencinger University of Maribor, Faculty of Civil Engineering

Povzetek

Problem izohronosti je obravnavan s stališča dinamičnih sistemov ter iz zgodovinskega stališča. Matematično je razložen Huygensov model ure s cikloidnim nihalom. Na osnovi analize funkcije periode obravnavamo dva dinamična podsistema tridimenzionalnega sistema s centralno mnogoterostjo in poiščemo potrebne in zadostne pogoje za izohronost centra na raznoterosti določeni s koeficienti sistema.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

G.E. Hite: Approximations for the Period of a Simple Pendulum, The Physics Teacher, Vol. 43, p.p. 290, 2005

C. Huygens The pendulum clock or geometrical demonstrations concerning the motion of pendula as applied to clocks. Translated from the Latin and with a preface and notes by Richard J. Blackwell. With an introduction by H. J. M. Bos. Iowa State University Press, Ames, IA, 1986

H. Poincaré: Mémoire sur les courbes dénies par une équation différentielle, J. Math. Pures et. Appl. (Sér. 3), Vol. 7, p.p. 375–422, 1881; (Sér. 3), Vol. 8, p.p. 251–296, 1882; (Sér. 4), Voil. 1, p.p. 167–244, 1885; (Sér. 4), Vol. 2, p.p. 151–217, 1886

V.G. Romanovski, D.S. Shafer: The Center and cyclicity Problems: A computational Algebra Approach, Boston: Birkhäuser, 2009

B. Ferčec, X. Chen, V. Romanovski: Integrability conditions for complex systems with homogeneous quintic nonlinearities, Journal of applied analysis and computation, Vol. 1, Iss. 1, p.p. 9 – 20, 2011

B. Ferčec, J. Giné, Y. Liu, V. Romanovski: Integrability conditions for Lotka‐Volterra planar complex quartic systems having homogeneous nonlinearities, Acta applicandae mathematicae, Vol. 124, Iss. 1, p.p. 107 – 122, 2013

B. Ferčec, J. Giné, M. Mencinger, R. Oliveira: The center problem for a 1 : ‐4 resonant quadratic system, Journal of mathematical analysis and applications, Vol. 420, Iss. 2, p.p. 1568 – 1591, 2014

Z. Zhou: A New Method for Research on the Center‐Focus Problem of Differential Systems, Abstract and Applied Analysis, Art. ID 926538, 5 p.p., 2014

D. Cox, J. Little, D. O’Shea: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, New York: Springer, 3rd edition, 2007

S.Yu. Pilyugian, G.R. Sell: A Biographical Sketch of Victor A. Pliss, Journal of Dynamics and Differential Equations, Vol.15, 2003

V.A. Pliss: A reduction principle in the theory of stability of motion, Izv. Akad. Nauk SSSR Ser. Mat., Vol. 28, p.p. 1297–1324, 1964

S. Chow, J. K. Hale: Methods of Bifurcation Theory, Springer‐Verlag, New York, 1982

J. Sijbrand: Properties of center manifolds, Trans.~Amer.~Soc., Vol. 289, 431‐469, 1985

R. Rikitake: Oscillations of a system of disc dynamos, Proc. Cambridge Philos. Soc., Vol. 54, p.p. 89‐105, 1958

R. Hide, A. C. Skeldon, D.J. Acheson: A study of two novel self‐exciting single‐disk homopolar dynamos: theory, Proc. R. Soc. Lond. A , Vol. 452, p.p. 1369‐1395, 1996

V.F. Edneral, A. Mahdi, V.G. Romanovski, D.S. Shafer: The center problem on a center manifold in �� , Nonlinear Anal., Vol. 75, p.p. 2614‐2622, 2012

V. Romanovski, M. Mencinger, B. Ferčec: Investigation of center manifolds of three‐ dimensional systems using computer algebra, Programming and computer software, Vol. 39, iss. 2, p.p. 67‐73, 2013

Objavljeno
2024-05-23
Kako citirati
Ferčec B., & Mencinger M. (2024). O IZOHRONOSTI PERIODIČNIH REŠITEV NA CENTRALNI MNOGOTEROSTI . Journal of Energy Technology, 8(4), 43-56. https://doi.org/10.18690/jet.8.4.43-56.2015
Rubrike
Articles