SINGLE-LAYER ORGANIC SEMICONDUCTOR SOLAR CELLS

  • Bruno Cvikl Faculty of Energy Technology, University of Maribor
Keywords: organic solar cell, excitons, electron trap density

Abstract

The physical processes occurring within a singleͲlayer organic semiconductor solar cell under steadyͲstate illumination leading to a short circuit current for the zero externally applied bias voltage are investigated. In the unipolar, singleͲlayer metal/organic/metal structure, on account of the exponential decrease of light intensity within the organic material, the concentration of excitons is a function of the position within it. The charge recombination becomes spatially nonͲ uniform, leading to the spatial dependent trap density. The short circuit current represents the uncompensated (by the builtͲin electric field separated) charges, which are, on the average, at most one exciton diffusion length away from the electrode. The model is applied to the holeͲ only singleͲlayer poly(paraͲphenilene thienylene) organic solar cell ITO/LPPPT(59 nm)/Al
published currentͲvoltage data for which the spatial dependence of the internal potential, the resulting internal electric field, and the trap charge density is calculated.

Downloads

Download data is not yet available.

References

P. Peumans, V. Buloviē, S. R. Forest, Efficient photon harvesting at high optical intensities in ultrathin organic doubleͲheterostructure photovoltaic diodes, Appl. Phys. Lett., 76, 2650 (2000).

P. Peumans, A. Yakimov, S. R. Forrest, Small molecular weight organic thinͲfilm photodetectors and solar cells, J. Appl. Phys. 93, 3693 (2003).

A. Kumar, S. Sista, Y. Yang, Dipole induced anomalous SͲshape IͲV curves in polymer solar cells, J. Appl.Phys. 105, 094512 (2009).

M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).

I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Direct measurement of conjugated polymer electronic excitation energies using the metal/polymer/metal structures, Phys. Rev. Lett. 76, 1900 (1996).

S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley&Sons, New York, 1981.

G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, Photovoltaic measurements of the builtͲin potential in organic light emitting diodes and photodiodes, J. Appl. Phys. 84, 1583 (1998).

A. K. Ghosh, T. Feng, Merocyanine organic solar cells, J. Appl. Phys. 49, 5982 (1978).

N. Tessler, N. Rappaport, Excitation density dependence of photocurrent efficiency in low mobility semiconductors, J. Appl. Phys. 96, 1083 (2004).

P. N. Murgatroyd, Theory of spaceͲchargeͲlimited current enhanced by Frenkel effect, J. Phys. D; Appl. Phys., 151 (1970).

B. Cvikl, The driftͲdiffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level, submitted for publication.

K. Petritsch in Organic Solar Cell Architectures, PhD Thesis, 2000. TechnischͲ Naturwissenschaftliche Fakultät der Technischen Universität Graz, Austria.

M. Goodman, A. Rose, Double extraction of uniformly generated electronͲhole pairs from insulators with noninjecting contacts,J. Appl. Phys. 42, 2823 (1971).

B. Cvikl, unpublished.

ref. /11/; see also B. Cvikl, M. Koželj, On the difference between drift and driftͲdiffusion interpretation of electron current in singleͲlayer metal/organic semiconductor structure, I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Direct measurement of conjugated polymer electronic excitation energies using the metal/polymer/metal structures, Phys. Rev. Lett. 76, 1900 (1996).

S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley&Sons, New York, 1981.

G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, Photovoltaic measurements of the builtͲin potential in organic light emitting diodes and photodiodes, J. Appl. Phys. 84, 1583 (1998).

A. K. Ghosh, T. Feng, Merocyanine organic solar cells, J. Appl. Phys. 49, 5982 (1978).

N. Tessler, N. Rappaport, Excitation density dependence of photocurrent efficiency in low mobility semiconductors, J. Appl. Phys. 96, 1083 (2004).

P. N. Murgatroyd, Theory of spaceͲchargeͲlimited current enhanced by Frenkel effect, J. Phys. D; Appl. Phys., 151 (1970).

B. Cvikl, The driftͲdiffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level, submitted for publication.

K. Petritsch in Organic Solar Cell Architectures, PhD Thesis, 2000. TechnischͲ Naturwissenschaftliche Fakultät der Technischen Universität Graz, Austria.

M. Goodman, A. Rose, Double extraction of uniformly generated electronͲhole pairs from insulators with noninjecting contacts,J. Appl. Phys. 42, 2823 (1971).

B. Cvikl, unpublished.

ref. /11/; see also B. Cvikl, M. Koželj, On the difference between drift and driftͲdiffusion interpretation of electron current in singleͲlayer metal/organic semiconductor structure,I. H. Campbell, T. W. Hagler, D. L. Smith, J. P. Ferraris, Direct measurement of conjugated polymer electronic excitation energies using the metal/polymer/metal structures, Phys. Rev. Lett. 76, 1900 (1996).

S. M. Sze, Physics of Semiconductor Devices, 2nd Edition, John Wiley&Sons, New York, 1981.

G. G. Malliaras, J. R. Salem, P. J. Brock, J. C. Scott, Photovoltaic measurements of the builtͲin potential in organic light emitting diodes and photodiodes, J. Appl. Phys. 84, 1583 (1998).

A. K. Ghosh, T. Feng, Merocyanine organic solar cells, J. Appl. Phys. 49, 5982 (1978).

N. Tessler, N. Rappaport, Excitation density dependence of photocurrent efficiency in low mobility semiconductors, J. Appl. Phys. 96, 1083 (2004).

P. N. Murgatroyd, Theory of spaceͲchargeͲlimited current enhanced by Frenkel effect, J. Phys. D; Appl. Phys., 151 (1970).

B. Cvikl, The driftͲdiffusion interpretation of the electron current within the organic semiconductor characterized by the bulk single energy trap level, submitted for publication.

K. Petritsch in Organic Solar Cell Architectures, PhD Thesis, 2000. TechnischͲ Naturwissenschaftliche Fakultät der Technischen Universität Graz, Austria.

M. Goodman, A. Rose, Double extraction of uniformly generated electronͲhole pairs from insulators with noninjecting contacts,J. Appl. Phys. 42, 2823 (1971).

B. Cvikl, unpublished.

ref. /11/; see also B. Cvikl, M. Koželj, On the difference between drift and driftͲdiffusion interpretation of electron current in singleͲlayer metal/organic semiconductor structure,devices and materials-MIDEM, Proceedings, September 9-11,2009,p.69Ͳ74,Postojna,Slovenia.

Published
2024-05-20
How to Cite
Cvikl B. (2024). SINGLE-LAYER ORGANIC SEMICONDUCTOR SOLAR CELLS. Journal of Energy Technology, 2(4), 13-20. https://doi.org/10.18690/jet.2.4.13-20.2009
Section
Articles