AERODINAMIČNE KARAKTERISTIKE NESTACIONARNEGA ZASTOJA NA PROFILU S809 PRI NIZKIH REYNOLDSOVIH ŠTEVILIH

  • Matej Fike Faculty of Mechanical Engineering, University of Maribor
  • Gorazd Bombek Univerza v Mariboru, Katedra za energetsko, procesno in okoljsko inženirstvo
  • Matjaž Hriberšek Fakulteta za strojništvo, Univerze v Mariboru
  • Aleš Hribernik Univerza v Mariboru, Tehniška fakulteta-Strojništvo

Povzetek

Opravljena je bila raziskava, kjer smo preučevali karakteristike nestacionanega statičnega zastoja na profilu S809, katerega aerodinamične karakteristike so reprezentativne za vetrne turbine z horizontalno osjo. Eksperimentalno je zelo težko preučevati ta pojav, še posebej kadar želimo preučevati odcepljanje toka na rotirajočih lopaticah. Izvedba meritev v zračnem tunelu oziroma simulacij računalniške dinamike tekočin je primernejše. Z namenom raziskovanja nestacionarnega statičnega zastoja glede aerodinamičnih karakteristik S809 profila je bila opravljena primerjalna študija, tako so bili primerjani eksperimentalni in numerični rezultati položaja odcepitve toka, porazdelitve tlaka po profilu in hitrostih profilov vključno z oscilacijami hitrosti. Eksperimentalni rezultati so bili pridobljeni z uporabo PIV (meritev hitrosti z odslikavo delcev) in pri različnih napadnih kotih. Pri nizkih napadnih kotih nismo zaznali odcepitve toka, pri napadnem kotu 9.6° je odcepljen vrtinec zavzemal 50% dolžine tetive profila, pri napadnem kotu 20° zastojni vrtinec obsega ves profil. Opazovana področje odcepitve ni bilo stacionarno ampak smo ugotovili, da oscilira okrog njene srednje pozicije v intervalu ±10% dolžine tetive. Uporabljena turbulentna modela, k-ε in SST, v 2D časovno odvisnih simulacijah nista napovedala teh oscilacij, čeprav so se numerični rezultati dokaj dobro ujemali z eksperimentalno pridobljenimi, še posebej polja povprečne hitrosti in polja vrtinčnosti na sesalni strani profila pri uporabi SST turbulentnega modela.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

Lissaman, P.B.S., Low-Reynolds-number airfoils, Annual Review of Fluid Mechanics, Vol. 15, 1983, pp. 223–239.

Mueller, T.J. (ed.), Fixed and flapping wing aerodynamics for micro air vehicle applications, Progress in Astronautics and Aeronautics, ISBN 1-56347-517-0, AIAA, 2001.

Simpson, R.L., Chew, Y.T., Shivaprasad, B.G., The structure of a separating turbulent boundary layer: part I, mean flow and Reynolds stresses; part II, higher order turbulence results. The Journal of Fluid Mechanics 113, 1981, pp. 23–73.

Nishimura, H., Taniike, Y., Aerodynamics characteristics of fluctuating forces on a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 89, 2001, pp. 713– 723.

Kim, B.S.; A Study on the Optimum Blade Design and the Aerodynamic Performance Analysis for the Horizontal Axis Wind Turbines, Ph.D. Thesis, Korea Maritime University, 2005.

Wolfe, W.P., Ochs., S.S., CFD calculation of S809 aerodynamic characteristics. AIAA- 97- 0973, 1997.

Devinant, P., Laverne, T., Hureau, J., Experimental study of wind-turbine airfoil aerodynamics in high turbulence, Journal of Wind Engineering and Industrial Aerodynamics, 90, 2002, pp. 689–707

Sommers, D.M., Design and Experimental Results for the S809 Airfoil, NREL/SR-440-6918, 1997.

Chapin, W. G., Dynamic-pressure measurement using an electronically scanned pressure module, NACA TM-84650, 1983.

Raffel, M., Willert, C., Kompenhans, J., Particle Image Velocimetry: A Practical Guide, ISBN 3-540–63683-8, Springer-Verlag., 1998.

Lehr, A., Bölcs, A., Application of a particle image velocimetry system to the investigation of unsteady transonic flows in turbomachinery, 9th International Symposium on Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines, Lyon, 2000, pp. 4–8.

Ansys. CFX-SolverTheory Guide, Release 12.1, (2009).

Celik, I. B., Ghia, U., Roache, P. J., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, Vol. 130, No. 7., 2008.

Sicot, C., Aubrun, S., Loyer, S., Devinan, P., Unsteady characteristics of the static stall of an airfoil subjected to freestream turbulence level up to 16%. Experiments in Fluids, 41, 2006, pp. 641–648.

Jacob, M.C., Boudet, J., Casalino, D., A rod-airfoil experiment as benchmark for broadband noise modeling, Theoret. Comput. Fluid Dynamics, 19, 2005, pp. 171–196.

Casalino, D., Jacob, M.C.: Prediction of aerodynamic sound from circular rods via spanwise statistical modeling. Journal of Sound and Vibrations, 262, 2003, pp. 815–844.

Jošt, D., Lipej, A., Numerical prediction of the vortex rope in the draft tube. Proceedings of the 3rd IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno: University of Technology, Brno, 2009, pp. 14–16.

Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1994, pp. 1598–1605.

Davidson, L., Evaluation of the SST-SAS model: channel flow, asymmetric diffuser and axi- symmetric hill, European Conference on Computational Fluid Dynamics ECCPMAS CFD 2006, Delft, the Netherlands, 2006.

Yang, Z., Haan, F. L., Hui, H., Ma, H., An Experimental Investigation on the Flow Separation on a Low-Reynolds-Number Airfoil, 45th AIAA Aerospace Sciences Meeting and Exhibition, Reno Nevada, USA, AIAA-2007-0275, 2007.

Lammers, P., Jovanović, J., Durst, F., Numerical experiments on wall turbulence at low Reynolds numbers, Thermal Science; Vol. 10, No 2, 2006, pp. 33–62

Objavljeno
2024-04-18
Kako citirati
Fike M., Bombek G., Hriberšek M., & Hribernik A. (2024). AERODINAMIČNE KARAKTERISTIKE NESTACIONARNEGA ZASTOJA NA PROFILU S809 PRI NIZKIH REYNOLDSOVIH ŠTEVILIH. Journal of Energy Technology, 6(1), 33-50. https://doi.org/10.18690/jet.6.1.33-50.2013
Rubrike
Articles