TURBINE SEALING STEAM HEAT RECOVERY WITH DYNAMIC STIRLING ENGINES

  • Dušan Strušnik Energetika Ljubljana d.o.o. enota TE-TOL
  • Marčič Marčič Univerza v Ljubljani, Fakulteta za strojništvo
  • Jurij Avsec Fakulteta za energetiko Univerze v Mariboru
Keywords: analysis, Stirling engine, heat, working gas, sealing steam, steam turbine, regenerator, efficiency, isochoric compression

Abstract

This paper presents the possibilities of sealing steam heat recovery in a steam condensation turbine with the use of dynamic Stirling engines. The installation of dynamic Stirling engines into the turbine sealing steam system allows the recovery of sealing steam heat and the generation of electrical energy. The Stirling engine dynamics are expressed with a built-in working gas storage tank and working gas flow control to ensure adequate power output of the Stirling engine. The working gas quantity in the engine is controlled with regard to the available turbine sealing steam heat. Via the measurement of the turbine sealing steam quantity and quality, a model of the working gas pressure conditions in the Stirling engine is designed. The engine responsiveness at various working gas quantities and types is analysed.

Downloads

Download data is not yet available.

References

S. Toghyani, A. Kasaeian, S. H. Hashemabadi, M. Salimi: Multi-objective optimization of GPU3 Stirling engine using third order analysis, Energy Conversion and Management, 87, (2014), 521–529.

J. Ruelas, N. Velazquez, J. Cerezo: A mathematical model to develop a Schefflertypesolar concentrator coupled with a Stirling engine, Appl Energy, 101, (2013), 101, 253–60.

S. K. Andersen: Numerical simulation of cyclic thermodynamic processes, PhD Thesis, Department of Mechanical Engineering, Technical University of Denmark, (2006).

T. Lia, D. Tanga, Z. Lia, J. Dua, T. Zhoub, Y. Jiab:Development and test of a Stirling engine driven by waste gases for the micro-CHP system,Applied Thermal Engineering, 33-34, (2012), 119-123.

J. I. Prieto, J. Fano, C. González, M. A. González, R. Diaz: Preliminary design of the kinematic Stirling engine using dynamic similarity and quasi-static simulation, Mechanical Engineering Science, 211, (1997), 229-238.

M. Mori, M. Sekavčnik, B. Drobnič: Karakteristike stirlingovega motorja, Univerza v Ljubljani, Fakulteta za strojništvo, (2010) p.p. 3-8.

J. L. Salazar, W. L. Chen: A computational fluid dynamics study on the heat transfer char- acteristics of the working cycle of a b-type Stirling engine, Energy Conversion and Management, 88, (2014), 177–188.

H. Karabulut, F. Aksoy, E. Qzturk: Thermodynamic analysis of a b type Stirling engine with a displacer driving mechanism by means of a lever, Renew Energy, 34, (2009), 202–8.

W. L Chen, K. L. Wong, Y. F. Chang: A computational fluid dynamics study on the heat transfer characteristics of the working cycle of a low temperature-differential c-type Stirling engine, Int Journal Heat Mass Transfer, 75, (2014), 145–55.

C. H. Cheng, Y. J. Yu:Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism, Renew Energy, 35, (2010), 2590–601.

U. Stritih, G. Zupan, V. Butala: Parametrična analiza Stirlingove soproizvodne enote na biomaso za uporabo v hišni tehniki, Strojniški vestnik, Journal of Mechanical Engeeniring, Univerza v Ljubljani, Fakulteta za strojništvo, 2007.

F. Sala, C. M. Invernizzi: Low temperature Stirling engines pressurised with real gas effects, Energy, 75, (2014), 225-236.

G. Angelino, C. Invernizzi: Real gas brayton cycles for organic working fluids,Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 215 (1), (2001), 27-38.

C. M. Invernizzi: Stirling engines using working fluids with strong real gas effects, Applied Thermal Engineering, 30 (13), (2010), 1703-10.

G. Valentia, P. Silvaa, N. Fergnania, G. D. Marcoberardinoa, S. Campanaria, E. Macchia: Experimental and numerical study of a micro-cogeneration Stirling engine for residential applications, Energy Procedia, 45, (2014), 1235-1244.

N. C. J. Chen, F. P. Griffin: A Review of Stirling Engine Mathematical Models, Oak Ridge National Laboratory, (1983).

N. Parlak, A. Wagner, M. Elsner, H.S. Sohyan: Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions, Renewable Energy, 34, (2009) 266-273

Matlab: Computer program, Simulink, version 2010-a.

M. Hooshang, R. A. Moghadam, S. A. Nia, M. T. Masouleh: Optimization of Stirling engine design parameters using neural networks, Renewable Energy, 74, (2015), 855-866.

X. S. Zhang: Neural networks in optimization, Springer; 2000.

M. K. D. Kiani, B. Ghobadian, T. Tavakoli, A. M. Nikbakht, G. Najafi: Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends, Energy Convers Manag, (2010), 65-69.

Y. O. Özgören, S. Çetinkaya, S. Sarıdemir, A. Çiçek, F. Kara: Predictive modeling of performance of a helium charged Stirling engine using an artificial neural network, Energy Conversion and Management, 67, (2013), 357–368.

Published
2024-04-08
How to Cite
Strušnik D., Marčič M., & Avsec J. (2024). TURBINE SEALING STEAM HEAT RECOVERY WITH DYNAMIC STIRLING ENGINES. Journal of Energy Technology, 7(3), 17-34. https://doi.org/10.18690/jet.7.3.17-34.2014
Section
Articles