ANALITIČEN POSTOPEK OCENITVE FREKVENČNEGA SPEKTRA SPWM IZHODNE NAPETOSTI ENOFAZNEGA RAZMERNIKA

  • Alenka Hren University of Maribor, Faculty of Electrical Engineering and Computer Science
  • Franc Mihalič University of Maribor, Faculty of Electrical Engineering and Computer Science

Povzetek

Za zagotavljanje visokokakovostnega trajnostnega pretoka energije iz obnovljivih virov, mora razmerniško vezje, ki je ključni sestavni element pretvorniških sistemov, na izhodu zagotavljat sinusno obliko napetosti. To lastnost oz. obliko “vgradimo” v izhodno napetost razsmernika z izbranim modulacijskih postopkom, ki pa ob osnovni harmonski kompenenti vnaša v izhodno napetost tudi višje harmonske komponente. Te negativno vplivajo na breme razsmerniškega vezja in njegov izkoristek delovanja. V enofaznem ali trifaznem sistem (omrežne povezave, sistemi neprekinjenega napajanja ali motorni pogoni), mora razmerniško vezje delovati tudi z ustreznim, dovolj majhnim, faktorjem popačitve (Total Harmonic Distortion – THD), ki pa je odvisen prav od vsebnosti višjih harmonskih komponent v izhodni napetosti.
V članku je opisan postopek celovite analize harmonskega spektra trinivojske izhodne napetosti enofaznega razsmernika, pri čemer izhodno trinivojsko napetost generiramo s pomočjo sinusne trikotne modulacije (Sinusoidal Pulse‐Width Modulation ‐ SPWM). Z uporabo Fourierjeve analize, Besselovih funkcij in trigonometričnih enakosti lahko posamezne višje harmonske komponente izračunamo analitično. Opisan je tudi način delovanja razmernika in postopek izračuna harmonskih komponent v področju nadmodulacije. Pravilnost postopka analitičnega izračuna je eksperimentalno verificirana.

Prenosi

Podatki o prenosih še niso na voljo.

Literatura

G. Wang, G. Konstantinou, C.D. Townsend, J. Pou, S. Vazquez, G.D. Demetriades, and V.G. Agelidis: A review of power electronics for grid connection of utility‐scale battery energy storage systems, IEEE Trans. Sustainable Energy, vol. 27 no. 4, pp. 1778‐1790, Oct. 2016

R. Theodorescu, M. Liserre, P. Rodríguez: Grid Converters for Photovoltaic and Wind Power Systems, West Sussex: IEEE Press/John Wiley & Sons, Inc., 2011

F. Mihalič and A. Hren: Isolated bi‐directional DC‐DC converter, Journal of Energy Technology, vol. 3, no. 3, pp. 27‐40, Aug. 2010

H.S. Black: Modulation Theory, New York: Van Nostrand Reinhold Company, 1953 M. Odavic, M. Summer, P. Zanchetta, and J.C. Clare: A theoretical analysis of the harmonic content of PWM waveforms for multiplefrequency modulators, IEEE Trans. Power Electronics, vol. 25, no. 1, pp. 131‐141, Jan. 2010

G. Fedele and D. Frascino: Spectral analysis of class of dc‐ac PWM inverters by Kapteyn series, IEEE Trans. Power Electronics, vol. 25, no. 4, pp. 839‐849, April 2010

N. Mohan, T.M. Undeland, W.P. Robbins: Power Electronics, Devices, Converter, Application and Design, second ed., New York: John Wiley & Sons., 1995

R.W. Ericson, D. Maksimovic: Fundamentals of Power Electronics, Dordrecht: Kluwer Academic Publisher, 2001

P. Wood: Switching Power Converters, New York: Van Nostrand Reinhold Company, 1981

D.G. Holmes, T.A. Lipo: Pulse Width Modulation for Power Converters: Principles and Practice, New York: IEEE Press/John Wiley & Sons, Inc., 2003

H.S. Patel and R.H. Hoft: Generalized technique of harmonic elimination and voltage control in thyristor inverters: Part I ‐ Harmonic elimination, IEEE Trans. Industry Applications, vol. IA‐9, no. 3, pp. 310‐317, May/Jun. 1973

A. Alesina and M.G.B. Venturini: Solid‐state power conversion: a Fourier analysis approach to generalised transformer synthesis, IEEE Trans. Circuits Systems, vol. CAS‐28, no. 11, pp. 319‐330, April 1981

J. Holtz: Pulsewidth modulation ‐ A survey, IEEE Trans. Industrial Electronics, vol. 39, no. 5, pp. 410‐420, Oct. 1992

V.G. Agelidis, A.I. Balouktsis, and C. Cossar: On attaining the multiple solutions of selective harmonic elimination PWM three‐level waveforms through function minimization, IEEE Trans. Industrial Electronics, vol. 55, no. 3, pp. 996‐1004, Mar. 2008

S.A. Saleh, C.R. Molonay, and M. Azzizur Rahman: Analysis and development of wavelet modulation for three‐phase voltage source inverters, IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3330‐3348, Aug. 2011

A. Alesina and M.G.B. Venturini: Analysis and design of optimum‐amplitude nine‐switch direct ac‐ac converter, IEEE Trans. Power Electronics, vol. 4, no. 1, pp. 101‐112, Jan. 1989

M. MilanoviČ and B. Dobaj: Unity input displacement factor correction principle for direct ac to ac matrix converters based on modulation strategy, IEEE Trans. Circuits Systems I, vol. 4, no. 2, pp. 221‐230, Feb. 2000

H. Koizumi, K. Kurokawa, and S. Mori: Analysis of class D inverter with irregular driving patterns, IEEE Trans. Circuits Syst. I, vol. 53, no. 3, pp. 677‐687, Mar. 2006

K.M. Cho, W.S. Oh, Y.T. Kim, and H.J. Kim: A new switching strategy for pulse width modulation (PWM) power converters, IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 330‐ 337, Feb. 2007

S.R. Bowes and D. Holliday: Optimal regular‐sampled pwm inverter control techniques, IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547‐1559, Jun. 2007

Q. Li, P. Wolfs: A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations, IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320‐1332, May 2008

R.H. Green and J.T. Boys: Implementation of pulsewidth modulated inverter modulation strategies, IEEE Trans. Ind, Appl., vol. IA‐18, no. 2, pp. 138‐145, Mar./Apr. 1983 .O. Caceres and I. Barbi: A boost dc‐ac converter: analysis, design, and experimentation, IEEE Trans. Power Electron., vol. 14, no. 1, pp. 134‐141, Jan. 1999

Z. Song and D.V. Sarwate: The frequency spectrum of pulse width modulated signals, Signal Processing, vol. 83, no. 10, pp. 2227‐2258, 2003

Objavljeno
2024-02-15
Kako citirati
Hren A., & Mihalič F. (2024). ANALITIČEN POSTOPEK OCENITVE FREKVENČNEGA SPEKTRA SPWM IZHODNE NAPETOSTI ENOFAZNEGA RAZMERNIKA. Journal of Energy Technology, 10(4), 11-27. https://doi.org/10.18690/jet.10.4.11-27.2017
Rubrike
Articles