MODELLING OF MAGNETIC REGENERATOR AND HEAT TRANSFER AGENT IN MICROCHANNELS

  • Dorin Botoc Faculty of Electrical Engineering
  • Bianca Eliza Oneata University of Strasbourg
  • Ionut Rusu Faculty of Electrical Engineering, Energetics and Applied Informatics, Gheorghe Asachi Technical University of Ia
  • Alexandru Salceanu 1 Faculty of Electrical Engineering, Energetics and Applied Informatics, Gheorghe Asachi Technical University of Ia
  • Jurij Avsec University of Maribor, Faculty of Energy Technology
Keywords: magnetic refrigeration, active magnetic regenerator, magnetocaloric material

Abstract

In this article, a brief introduction of conventional refrigeration is given, followed by a description and history of magnetic refrigeration. The active magnetic regenerator comprises 12 parallel plates of ma- gnetocaloric material (gadolinium (Gd)), through which circulates the heat transfer fluid (water, in this case). At both ends of the regenerator are the heat exchangers. The hot heat exchanger (HHEX) and
the cold heat exchanger (CHEX) connects the fluid to the heat sources. The principle of operation of a magnetic refrigeration installation is based on exploiting the magnetocaloric effect from the materials
that possess these properties (in this case, Gd).

Downloads

Download data is not yet available.

References

Sergiu Lionte: Caractérisation, étude et modélisation du comportement thermomagnétique d’un dispositif de réfrigération magnétique à matériaux non linéaires et point de Curie proche de la température ambiante, PhD Thesis, 2015

Brown, G. V.:Magnetic heat pumping near room temperature, Journal of Alloys and Compounds, 47(8), 3673‐3680, 1976

Kitanovski, A. Egolf: Thermodynamics of magnetic refrigeration, International journal of refrigeration, 29(3‐12), 3‐21, 2005

J Tusek, A Kitanovski, A Flisar et al:Active magnetic regenerator (AMR) experimental devices, în Fifth IIF‐IIR international conference on magnetic refrigeration at room temperature, Thermag V, Grenoble, France, 2012

Nellis, G., Engelbrecht, K., Klein, S., Zimm, C., and Russek, S.:Model and Evaluation Tools for Assessing Magnetocaloric Effect for Space Conditioning and Refrigeration Applications, 2004

Tishin, A. M., Gschneidner, K. A., and Pecharsky, V. K.:Magnetocaloric effect and heat capacity in the phase‐transition region, Physical Review B, 59(1), 503‐511, 1999

Tishin, A., and Spichkin, Y.:The Magnetocaloric Effect and its Applications., Institute of Physics Publishing, 2003

Kirol LD, Mills JI:Numerical analysis of thermomagnetic generators, J Appl Phys 56:824–828, 1984

Salomon D:Thermomagnetic mechanical heat engines, J Appl Phys 65:3687–3693, 1989

Pecharsky VK, Gschneidner KA Jr:Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2), J Magn Magn Mater 167:179–184, 1997

Sergiu Lionte et al.:Numerical analysis of a reciprocating active magnetic regenerator, Applied Thermal Engineering, ELSEVIER, 2014

C Vasile, C Muller:Innovative design of a magnetocaloric system, Int J Refrig, nr. 29:1318‐1326, 2006

C Vasile, C Muller:A new system for a magnetocaloric refrigerator, în First IIF‐IIR international conference on magnetic refriation at room temperature, Thermag I, Montreux, Switzerland, 2005

KW Lipso, KK Nilesen, DV Christensen et al: Measuring the effect of demagnetization in stacks of gadolinium plate using the magnetocaloric effect, J Magn Magn Mater, nr. 323:3027‐3032, 2011

C Aprea, A Grego, A Maiorino et al:Initial experimental results from a rotary permanent magnet magnetic refrigerator,Int J Refrig, vol. 43, nr. 111‐122, 2014

Published
2024-01-04
How to Cite
Botoc D., Oneata B. E., Rusu I., Salceanu A., & Avsec J. (2024). MODELLING OF MAGNETIC REGENERATOR AND HEAT TRANSFER AGENT IN MICROCHANNELS . Journal of Energy Technology, 14(1), 57-67. https://doi.org/10.18690/jet.14.1.57-67.2021
Section
Articles

Most read articles by the same author(s)

1 2 > >>