NAPOVED KAVITACIJSKE EROZIJE IN EROZIJE DELCEV V RADIALNO DIVERGENTNI TESTNI SEKCIJI
Povzetek
3D nestacionaren, kavitirajoč tok z delci skozi radialno divergentno testno sekcijo je bil simuliran z modelom homogene zmesi in modelom diskretne faze (DPM) s komercialno RDT kodo ANSYS Fluent. Turbulenca je modelirana po pristopu RANS z Reboudovim popravkom turbulentne viskoznosti v modelu k-ω SST. Izvedeni sta bili napoved kavitacijske erozije z modelom Schenke-Melissaris-Terwisga (SMT) in napoved erozije zaradi delcev z modelom Det Norske Veritas (DNV). Prepoznani sta bili dve različni erozijski coni, ena za zgolj kavitacijsko erozijo in ena za erozijo zgolj zaradi delcev. Analiziran je bil pojav cone čiste erozije zaradi delcev dolvodno od cone kavitacijske erozije. Z opazovanjem tokovnic dolvodno od kavitacijskih struktur je bilo ugotovljeno, da se v toku oblikujejo vrtinci in preusmerjajo delce proti steni, kar povzroča na steni cono erozije zgolj zaradi delcev. Ugotovljeno je bilo, da delci, obravnavani v tej študiji, ne spreminjajo toka do te mere, da bi se območje kavitacijske erozije znatno spremenilo v primerjavi z rezultati brez trdnih delcev, o katerih poroča literatura.
Prenosi
Literatura
Lord Rayleigh: VIII. On the pressure developed in a liquid during the collapse of a spherical cavity, Philosophical Magazine Series 6, Vol. 34, No. 200, pp. 94–98, 1917, doi: http://dx.doi.org/10.1080/14786440808635681
F. Hammit: Observations on cavitation damage in a flowing system, ASME Journal of Basic Engineering, Vol. 85, No. 3, 1963
A. Vogel, W. Lauterborn, and R. Timm: Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary, Journal of Fluid Mechanics, Vol. 206, No. September 1989, pp. 299–338, 1989, doi: 10.1017/ S0022112089002314
M. S. Plesset and R. B. Chapman: Collapse of an Initially Spherical Vapor Cavity in the Neighborhood of a Solid Boundary, Journal of Fluid Mechanics, Vol. 47, part 2, pp. 283– 290, 1971
F. Pereira, F. Avellan, and P. H. Dupont: Prediction of cavitation erosion: An energy approach, Journal of Fluids Engineering, Transactions of the ASME, Vol. 120, No. 4, pp. 719–727, 1998, doi: 10.1115/1.2820729
R. Fortes Patella, J.-L. Reboud, and L. Briancon Marjollet: A Phenomenological and numerical model for scaling the flow agressiveness in cavitation erosion, 2004. [Online]. Available: https://www.researchgate.net/publication/281921326
T. Melissaris, N. Bulten, and T. J. C. Van Terwisga: On the applicability of cavitation erosion risk models with a URANS solver, Journal of Fluids Engineering, Transactions of the ASME, Vol. 141, No. 10, 2019, doi: 10.1115/1.4043169
A. Philipp and W. Lauterborn: Cavitation erosion by single laser-produced bubbles, Journal of Fluid Mechanics, ol. 361, pp. 75–116, 1998, doi: 10.1017/S0022112098008738
C. Leclercq, A. Archer, R. Fortes-Patella, and F. Cerru: Numerical cavitation intensity on a hydrofoil for 3D homogeneous unsteady viscous flows, International Journal of Fluid Machinery and Systems, Vol. 10, No. 3, pp. 254–263, 2017, doi: 10.5293/ IJFMS.2017.10.3.254
A. Van Oosterom and J. Strackee: The Solid Angle of a Plane Triangle, IEEE Transactions on Biomedical Engineering, Vol. BME-30, No. 2, pp. 125–126, 1983, doi: 10.1109/ TBME.1983.325207
S. Schenke and T. J. C. van Terwisga: An energy conservative method to predict the erosive aggressiveness of collapsing cavitating structures and cavitating flows from merical simulations, International Journal of Multiphase Flow, Vol. 111, pp. 200–218, 2019, doi: 10.1016/j.ijmultiphaseflow.2018.11.016
M. Tinguely, D. Obreschkow, P. Kobel, N. Dorsaz, A. De Bosset, and M. Farhat: Energy partition at the collapse of spherical cavitation bubbles, Physical Review E–Statistical, Nonlinear, and Soft Matter Physics, Vol. 86, No. 4, pp. 1–6, 2012, doi: 10.1103/PhysRevE.86.046315
Y. C. Wang and C. E. Brennen: Numerical computation of shock waves in a spherical cloud of cavitation bubbles, Journal of Fluids Engineering, Transactions of the ASME, Vol. 121, No. 4, pp. 872–880, 1999, doi: 10.1115/1.2823549
S. Schenke, T. Melissaris, and T. J. C. Van Terwisga: On the relevance of kinematics for cavitation implosion loads, Physics of Fluids, Vol. 31, No. 5, 2019, doi: 10.1063/1.5092711
T. Melissaris, S. Schenke, N. Bulten, and T. J. C. van Terwisga: On the accuracy of predicting cavitation impact loads on marine propellers, Wear, Vol. 456–457, No. June, p. 203393, 2020, doi: 10.1016/j.wear.2020.203393
M. Pezdevsek, L. Kevorkijan, and I. Bilus: Cavitation Erosion Modelling – Comparison of Two Solid Angle Projection Approaches, International Journal of Simulation Modelling, Vol. 21, No. 2, pp. 249–260, 2022, doi: 10.2507/ijsimm21-2-600
P. J. Zwart, A. G. Gerber, and T. Belamri: A two-phase flow model for predicting cavitation dynamics, International Conference on Multiphase Flow, No. January 2004, p. 152, 2004
G. H. Schnerr and J. Sauer: Physical and Numerical Modeling of Unsteady Cavitation Dynamics, 4th International Conference on Multiphase Flow, No. June, pp. 1–12, 2001
M. P. Kinzel, J. W. Lindau, and R. F. Kunz: A unified homogenous multiphase CFD model for cavitation, American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, Vol. 1B-2017, No. January 2018, 2017, doi: 10.1115/FEDSM2017-69363
I. Bilus, M. Morgut, and E. Nobile: Simulation of sheet and cloud cavitation with homogenous transport models, International Journal of Simulation Modelling, Vol. 12, No. 2, pp. 94–106, 2013, doi: 10.2507/IJSIMM12(2)3.229
E. Goncalves and R. F. Patella: Numerical simulation of cavitating flows with homogeneous models, Computers and Fluids, Vol. 38, No. 9, pp. 1682–1696, 2009, doi: 10.1016/j.compfluid.2009.03.001
M. Morgut and E. Nobile: Influence of the Mass Transfer Model on the Numerical Prediction of the Cavitating Flow Around a Marine Propeller, Second International Symposium on Marine Propulsors smp’11, No. June, pp. 1–8, 2011
A. Niedzwiedzka, G. H. Schnerr, and W. Sobieski: Review of numerical models of cavitating flows with the use of the homogeneous approach, Archives of Thermodynamics, Vol. 37, No. 2, pp. 71–88, 2016, doi: 10.1515/aoter-2016-0013
M. Pezdevšek, I. Biluš, and G. Hren: COMPARISON OF CAVITATION MODELS FOR THE PREDICTION OF CAVITATION AROUND A HYDROFOIL, Journal of Energy Technology, Vol. 14, No. 1, pp. 41–55, 2021[25]
T. Schenke, Sören; van Terwisga: Finite Mass Transfer Effects in Cavitation Modelling, Proceedings of the 19th Numerical Towing Tank Symposium, pp. 1–6, 2015
W. Jian, M. Petkovšek, L. Houlin, B. Širok, and M. Dular: Combined numerical and experimental investigation of the cavitation erosion process, Journal of Fluids Engineering, Transactions of the ASME, Vol. 137, No. 5, 2015, doi: 10.1115/1.4029533
J. B. Carrat, R. Fortes-Patella, and J. P. Franc: Experimental and numerical investigation of the erosive potential of a leading edge cavity, International Journal of Fluid Machinery and Systems, Vol. 12, No. 2, pp. 136–146, 2019, doi: 10.5293/IJFMS.2019.12.2.136
N. Berchiche, J. P. Franc, and J. M. Michel: A cavitation erosion model for ductile materials, Journal of Fluids Engineering, Transactions of the ASME, Vol. 124, No. 3, pp. 601–606, 2002, doi: 10.1115/1.1486474
M. Dular and M. Petkovšek: On the mechanisms of cavitation erosion–Coupling high speed videos to damage patterns, Experimental Thermal and Fluid Science, Vol. 68, No. June 2015, pp. 359–370, 2015, doi: 10.1016/j.expthermflusci.2015.06.001
I. Biluš, M. Hočevar, M. Dular, and L. Lešnik: Numerical Prediction of Various Cavitation Erosion Mechanisms, Journal of Fluids Engineering, Vol. 142, No. 4, 2020, doi: 10.1115/1.4045365
A. Peters: Numerical Modelling and Prediction of Cavitation Erosion Using Euler-Euler and Multi-Scale Euler-Lagrange Methods, Universität Duisburg-Essen, 2019
M. H. Arabnejad, U. Svennberg, and R. E. Bensow: Numerical assessment of cavitation erosion risk using incompressible simulation of cavitating flows, Wear, Vol. 464–465, No. November 2020, p. 203529, 2021, doi: 10.1016/j.wear.2020.203529
I. Finne: Erosion of surfaces, Wear, Vol. 3, pp. 87–103, 1960, doi: 10.1016/0043-1648(60)90055-7
J. G. A. Bitter: A Study of Erosion Phenomena Part I, Wear, Vol. 6, pp. 169–190, 1963
J. G. A. Bitter: A study of erosion phenomena. Part II, Wear, Vol. 6, No. 3, pp. 169–190, 1963, doi: 10.1016/0043-1648(63)90073-5
Y. I. Oka, K. Okamura, and T. Yoshida: Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation, Wear, Vol. 259, No. 1–6, pp. 95–101, 2005, doi: 10.1016/j.wear.2005.01.039
Y. I. Oka and T. Yoshida: Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage, Wear, Vol. 259, No. 1–6, pp. 102–109, 2005, doi: 10.1016/j.wear.2005.01.040
K. R. Ahlert: Effects of Particle Impingement Angle and Surface Waiting on solid Partilce Erosion of AISI 1018Steel, 1994
Det Norske Veritas: Erosive wear in piping systems, 2007
A. Forder, M. Thew, and D. Harrison: A numerical investigation of solid particle erosion experienced within oilfield control valves, Wear, Vol. 216, No. 2, pp. 184–193, 1998, doi: 10.1016/S0043-1648(97)00217-2[41] G. Grant and W. Tabakoff: An Experimental Investigation of the Erosive Characteristics of 2024 Aluminum Alloy, Springfield, 1973
J. Sato, K. Usami, and T. Okamura: Basic Study of Coupled Damage Caused by Silt Abrasion and Cavitation Erosion, JSME International Journal, Vol. 34, No. 3, pp. 292–297, 1991, [Online]. Available: https://www.jstage.jst.go.jp/article/bpb1993/17/11/17_11_1460/_pdf/-char/ja
K. Su, J. Wu, and D. Xia: Dual role of microparticles in synergistic cavitation–particle erosion: Modeling and experiments, Wear, Vol. 470–471, p. 203633, 2021, doi: 10.1016/j.wear.2021.203633
F. Innings, E. Hultman, F. Forsberg, and B. Prakash: Understanding and analysis of wear in homogenizers for processing liquid food, Wear, Vol. 271, No. 9–10, pp. 2588–2598, 2011, doi: 10.1016/j.wear.2011.01.084
L. Kevorkijan, J. Ravnik, and I. Biluš: Numerično modeliranje kavitacijske erozije in abrazije delcev na profilu krila NACA 0015, in Kuhljevi dnevi 2021, 2021, No. September
P. J. Dunstan and S. C. Li: Cavitation enhancement of silt erosion: Numerical studies, Wear, Vol. 268, No. 7–8, pp. 946–954, 2010, doi: 10.1016/j.wear.2009.12.036
L. A. Teran, S. Laín, and S. A. Rodríguez: Synergy effect modelling of cavitation and hard particle erosion: Implementation and validation, Wear, Vol. 478–479, No. December 2020, 2021
L. Kevorkijan, L. Lešnik, and I. Biluš: Cavitation Erosion Modelling on a Radial Divergent Test Section Using RANS, Strojniski Vestnik/Journal of Mechanical Engineering, Vol. 68, No. 2, pp. 71–81, 2022, doi: 10.5545/sv-jme.2021.7364
D. Greif: Kavitacijska erozija v vbrizgalnih komponentah z uporabo polidisperznega kavitacijskega modela, 2012
M. S. Mihatsch, S. J. Schmidt, and N. A. Adams: Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra, Physics of Fluids, Vol. 27, No. 10, 2015, doi: 10.1063/1.4932175
S. Mouvanal, D. Chatterjee, S. Bakshi, A. Burkhardt, and V. Mohr: Numerical prediction of potential cavitation erosion in fuel injectors, International Journal of Multiphase Flow, Vol. 104, pp. 113–124, 2018, doi:10.1016/j.ijmultiphaseflow.2018.03.005
J.-L. Reboud, B. Stutz, and O. Coutier-Delgosha: Two-phase flow structure of cavitation: experiment and modelling of unsteady effects, 1998
S. A. Morsi and A. J. Alexander: An investigation of particle trajectories in two-phase flow systems, Journal of Fluid Mechanics, Vol. 55, No. 2, pp. 193–208, 1972, doi:10.1017/S0022112072001806
B. Gregorc: VPLIV TRDNO-KAPLJEVITIH ZMESI NA OBRATOVALNE KARAKTERISTIKE, Univerza v Mariboru, 2011