Unsupervised training for acoustic models of speech

Authors

  • Gregor Donaj University of Maribor, Faculty of Electrical Engineering, Computer Science and Informatics, Mathematics, Maribor, Slovenia. , Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Matematika, Maribor, Slovenija. https://orcid.org/0000-0002-0297-2714 (unauthenticated)
  • Andrej Žgank University of Maribor, Faculty of Electrical Engineering, Computer Science and Informatics, Maribor, Slovenia. , Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor, Slovenija.
  • Mirjam Sepesy Maučec University of Maribor, Faculty of Electrical Engineering, Computer Science and Informatics, Maribor, Slovenia. , Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor, Slovenija. https://orcid.org/0000-0003-0215-513X (unauthenticated)

DOI:

https://doi.org/10.18690/analipazu.3.2.69-74.2013

Keywords:

acoustical models, speech recognition, unsupervised training

Abstract

This paper presents unsupervised acoustical model training for automatic speech recognition. The main advantage of this training method is its speed and cost effectiveness compared to the manual transcription of speech, which is needed for supervised training. We present two methods of unsupervised training and test them on a large vocabulary continuous speech recognition system in the Broadcast News domain.

Author Biographies

  • Gregor Donaj, University of Maribor, Faculty of Electrical Engineering, Computer Science and Informatics, Mathematics, Maribor, Slovenia., Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Matematika, Maribor, Slovenija.

    Maribor, Slovenija. E-mail: gregor.donaj@um.si

  • Andrej Žgank, University of Maribor, Faculty of Electrical Engineering, Computer Science and Informatics, Maribor, Slovenia., Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor, Slovenija.

    Maribor, Slovenia. E-mail: andrej.zgank@um.si

  • Mirjam Sepesy Maučec, University of Maribor, Faculty of Electrical Engineering, Computer Science and Informatics, Maribor, Slovenia., Univerza v Mariboru, Fakulteta za elektrotehniko, računalništvo in informatiko, Maribor, Slovenija.

    Maribor, Slovenia. E-mail: mirjam.sepesy@um.si

Published

06.06.2022

Issue

Section

Prispevki

How to Cite

Donaj, G., Žgank, A., & Sepesy Maučec, M. (2022). Unsupervised training for acoustic models of speech. Anali PAZU, 3(2), 69-74. https://doi.org/10.18690/analipazu.3.2.69-74.2013

Most read articles by the same author(s)