Speech Recognition in the Broadcast News Domain

Authors

  • Mirjam Sepesy Maučec Faculty of Electrical Engineering, Computer Science and Informatics, University of Maribor / Smetanova 17, 2000 Maribor, Slovenia. , Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru / Smetanova 17, 2000 Maribor, Slovenija https://orcid.org/0000-0003-0215-513X (unauthenticated)
  • Andrej Žgank Faculty of Electrical Engineering, Computer Science and Informatics, University of Maribor / Smetanova 17, 2000 Maribor, Slovenia. , Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru / Smetanova 17, 2000 Maribor, Slovenija https://orcid.org/0000-0002-1411-5293 (unauthenticated)

DOI:

https://doi.org/10.18690/analipazu.1.1.54-56.2011

Keywords:

speech recognition, highly inflective language, language resources

Abstract

In this paper the structure of a speech recognition system is presented. We focus on Slovenian speech recognition.  UMB BN system is described. Currently, it is the most complex large vocabulary continuous speech recognition system for Slovenian language. It is designed for transcribing TV-news shows. In the paper language resources are also described being crucial in developing such systems.

Author Biographies

  • Mirjam Sepesy Maučec, Faculty of Electrical Engineering, Computer Science and Informatics, University of Maribor / Smetanova 17, 2000 Maribor, Slovenia., Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru / Smetanova 17, 2000 Maribor, Slovenija

    Maribor, Slovenia. E-mail: mirjam.sepesy@um.si

  • Andrej Žgank , Faculty of Electrical Engineering, Computer Science and Informatics, University of Maribor / Smetanova 17, 2000 Maribor, Slovenia., Fakulteta za elektrotehniko, računalništvo in informatiko, Univerza v Mariboru / Smetanova 17, 2000 Maribor, Slovenija

    Maribor, Slovenia. E-mail: andrej.zgank@uni-mb.si

Published

03.05.2022

Issue

Section

Prispevki

How to Cite

Sepesy Maučec, M., & Žgank , A. (2022). Speech Recognition in the Broadcast News Domain. Anali PAZU, 1(1), 54-56. https://doi.org/10.18690/analipazu.1.1.54-56.2011

Most read articles by the same author(s)